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Abstract

Swarm intelligence (SI) inspired strategies are based upon the collective intel-
lectual conduct of several species available in nature. These SI-based schemes
are executing pretty well to determine the solution for real-world complex op-
timization problems. For example, the artificial bee colony (ABC) algorithm is
one of the efficient members of Sl-based theorems. The ABC is based on the
mathematical simulation of the food foraging conduct of honey bees. However,
like other SI-based strategies, ABC and PSO also suffer from premature conver-
gence, stagnation, and, sometimes unable to unfold the actual outcomes for the

optimization problems.

To overcome the existing drawbacks and enhance the execution ability
of the ABC and PSO algorithm, in this thesis, the primary ABC and PSO
algorithm is redesigned using several approaches. In this research, two new
variants of ABC are designed, Limacon-inspired ABC and Fully Informed ABC,
and one new variant of PSO is designed, namely, Fitness-based PSO. Further,
these variants are applied to solve a real-world complex optimization problems,
namely, job shop scheduling problem (JSSP).

Firstly, an influential local search (LS) technique that is designed by tak-
ing inspiration by limacon a curve is incorporated in ABCA, and the designed
strategy is named Limacon inspired ABC (LABC) algorithm. Then, the ex-
ploitation capability of the LABC strategy is tested over 18 complex benchmark
optimization problems. Finally, the test results are compared with similar state-
of-art algorithms, and statistical analysis shows the LABC can be considered
a practical variant of the ABC algorithms to solve the complex optimization
problems.

Further, a novel NTA, namely Fully Informed Artificial Bee Colony (FABC)
algorithm is developed by taking inspiration from the position update strategy
of the fully informed particle swarm optimization algorithm. In the FABC, the
onlooker bee process of the Artificial Bee Colony (ABC) algorithm is modified
and designed such that the new position of the solution search agent is obtained
while learning from all the nearby agents. A new learning mechanism is incor-
porated with the ABC in which the individuals update the positions through
learning from all the neighbouring solutions as well as the best solution exists
in the swarm. The FABC is applied to solve the 105 LSJSSP instances in the
following experiment. The results obtained by the FABC are compared with the
state-of-art algorithms. The results analysis shows that the proposed approach to
solving LSJSSP is competitive in the field of swarm intelligent based algorithms
(SIA).

In continuation, a fitness-based particle swarm optimization (FitPSO)
is developed and applied to solve the LSJSSP problem instances. A fitness-
based solution update strategy is incorporated with the PSO strategy to get the
desired results in the proposed solution. The obtained outcome is motivating,
and through results analysis, confidence is achieved that the proposed FitPSO
can be a recommendation to solve the existing and the new LSJSSP instance.
A fair comparative analysis is also presented, which also supports the proposed
recommendation.
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Chapter 1

Introduction

This chapter discusses an overview of the thesis. It demonstrates the objective of carrying
out this work as well as delineates the inspiration behind the research.

1.1 Introduction

Nature has always been a source of motivation for the human being in technological advance-
ments. In recent years, nature-inspired algorithms (NIAs) have gained a lot of interest from
many researchers. Many complex optimization problems are not easily addressable using
the present deterministic optimization approaches. To find out the near-optimal solution,
NIAs are an alternate solution for these kinds of problems. The NIAs are mainly classified
as evolutionary algorithms (EA) and swarm intelligence (SI) based algorithms. The EAs
are based on various biological evolution mechanisms like selection, mutation, crossover, etc.
Differential evolution (DE) [1], genetic algorithm (GA) [2] etc., are some popular evolu-
tionary algorithms. Many natural phenomena that depict the grouping behavior of insects,
animals, birds, etc., inspire researchers to develop different sorts of optimization algorithms
known as SI based algorithms. These algorithms became popular in a short time due to the
advent of computational intelligence. In recent years, SI has gained a lot of interest from
many researchers. The collective, cooperative, and intelligent behavior of various swarms
of social insects, birds, animals, etc., is the basic building block for SI based algorithms.
Artificial bee colony (ABC), spider monkey optimization (SMO), ant colony optimization
(ACO), etc., are some popular SI based algorithms. Researchers are continuously working in
the field of ST motivating techniques to refine their performance. To enhance the efficiency,
the available algorithms are modified by introducing new local search (LS) strategies, by
introducing new phase(s), or by hybridizing with a different kind of population-based al-
gorithms [3]. Further, SI based algorithms are proving their efficiency in solving complex
real-world optimization problems.

The ABC algorithm is efficient in the arena of SI based strategies. The ABC algorithm
was presented by D. Karaboga in the year 2005 [4]. The ABC algorithm is mathematically
simulated on the food foraging conduct of natural honey bees. As per the available literature,
the ABC algorithm is an efficient algorithm to discover the solutions of several complex real-
world optimization problems [5, 6, 7]. There is always another side of the coin, ABC also may
sometimes stop advancing close to global optimum although the solutions did not converge
to local optimum [8]. It is reported in the literature that the search procedure of ABC
is favorable in terms of exploration behavior but not in terms of exploitation behavior [9].
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Further, It can be observed that sometimes the ABC algorithm may confine in the situation
of stagnation and premature convergence [9, 7]. So there is always a possibility to get jump of
the actual solution. The researchers are working to restructure the ABC algorithm to refine
its performance. Thus, the incorporation of LS methodology may improve the exploitation
capacity of the ABC and subsequently decreasing the chance of jumping the actual solution.
This research work is also a contribution to boost the performance of the ABC algorithm.

Firstly, an influential local search (LS) technique that is designed by taking inspiration
by limacon a curve is incorporated in ABCA, and the designed strategy is named Limacon
inspired ABC (LABC) algorithm. Then, the exploitation capability of the LABC strategy
is tested over 18 complex benchmark optimization problems. Finally, the test results are
compared with similar state-of-art algorithms, and statistical analysis shows the LABC can
be considered a practical variant of the ABC algorithms to solve the complex optimization
problems.

A novel swarm intelligence-based algorithms (SIA) is applied to solve the 105 LSJSSP
instances in the following experiment. The selected STA is the Fully Informed Artificial Bee
Colony (FABC) algorithm. The FABC algorithm is developed by taking inspiration from
the GABC algorithm position update process. In the FABC, the onlooker bee process of the
Artificial Bee Colony (ABC) algorithm is modified and designed such that the new position
of the solution search agent is obtained while learning from all the nearby agents. The results
obtained by the FABC are compared with the state-of-art algorithms. The results analysis
shows that the proposed approach to solving LSJSSP is competitive in the field of SIA.

In continuation, a fitness-based particle swarm optimization (FitPSO) is developed and
applied to solve the LSJSSP problem instances. A fitness-based solution update strategy is
incorporated with the PSO strategy to get the desired results in the proposed solution. The
obtained outcome is motivating, and through results analysis, confidence is achieved that
the proposed FitPSO can be a recommendation to solve the existing and the new LSJSSP
instance. A fair comparative analysis is also presented, which also supports the proposed

recommendation.

1.2 Motivation

The real-world engineering optimization problems are modeled with multi-dimensional func-
tions. These problems are not easily addressed. The properties associated with such prob-
lems are discontinuities, lack of analytical representation of the objective function, and noise
dissemination. The salient features to numerically optimize these problems through algo-
rithmic operations are computation accuracy, time criticality, and implementation efforts.
In these circumstances, the available conventional mathematical strategies do not perform
well to solve these problems. The conventional strategics are nonrobust and time-consuming
or sometimes unable to solve these problems. This motivates the researchers to design and
develop a new class of algorithms namely SI based algorithms. The ST based algorithms are
robust enough to apply to various sets of problems and are fast enough to execute near-
optimal solutions. The SI based algorithms do also have the drawbacks of stagnation and
premature convergence. This further motivates researchers to develop an efficient SI based
algorithm that can be applied to solve these problems.
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1.3 Key Research Area

There are two key elements responsible for the execution of any SI based algorithm to drive
the members of a swarm in terms of potential solution update: the variation process, respon-
sible to explore different search space areas that is social learning and the selection process,
responsible to ensures the exploitation of the erstwhile experience that is self intelligence.

The reviewed literature during the research demonstrated that SI based algorithms at
seldom may stop converging to the global optimum even though the set of potential solutions
has not converged to a local optimum. Therefore, to eliminate the existing drawbacks of
SI based algorithms researchers are working to nurture a genuine equilibrium amid the
exploration and exploitation capabilities. Sequentially, in this research a significant SI based
algorithm namely, ABC and PSO algorithms are chosen as a key research area. The reviewed
literature also reports that ABC and PSO are quite reliable and efficient algorithm in the
field of SI based algorithms. Distinguishable growth in the publications on these algorithms
since the last decade is enough to justify its wide applicability to real-world optimization
problems. The literature reports that the performance of the existing variants of ABC and
PSO algorithms to be enhanced. The competitiveness of the designed new variants of ABC
and PSO algorithms may be established using a set of benchmark problems. Further, the
designed variant of ABC and PSO algorithms may be practiced to solve significant real-world
engineering problems specifically, job shop scheduling problem (JSSP) to authenticate their
existence.

1.4 Thesis Organization

The thesis is organized into a total of eight chapters. A brief outline of each chapter is as
follows:

Chapter 1: This chapter introduces a source of motivation to carry out the research.
The key research area is defined. Further, research objectives are defined with the research
methodology.

Chapter 2: This chapter presents an overview of the ABC and PSO algorithms and an
extensive literature review on ABC and PSO. This chapter also discusses their applications.

Chapter 3: This chapter presents Limacon inspired artificial bee colony algorithm for
numerical optimization.

Chapter 4: This chapter presents a modified ABC based algorithm namely, Fully In-
formed ABC (FABC).

Chapter 5: In this chapter, the designed FABC is applied to solve the 105 significant
instances of large scale JSSP.

Chapter 6: This chapter presents an efficient PSO variant namely, Fitness based PSO
(FitPSO).

Chapter 7: In this chapter, the FitPSO strategy is tested over 105 large scale job shop
scheduling instances. Further, a comparative analysis of FABC and FitPSO is presented
over the JSSP.

Chapter 8: This chapter summarizes the key outcomes and main contributions of the
thesis and lists further research paths.
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Chapter 2

Literature Review

This chapter presents the structure of the ABC and PSOAs. Further, it demonstrates the
recent advancements designed and proposed in these two algorithms by various researchers
to boost its efficiency and execution abilities.

2.1 Artificial bee colony (ABC) algorithm

SI borne strategies rely upon the collective sensible act of various species found in nature.
Due to the advent of computational intelligence, ST based algorithms are very popular strate-
gies in a short period. Latest SI algorithms include ABC [4], particle swarm optimization
(PSO) [10], teaching learning-based optimization (TLBO) [11], SMO [12], and so on.

In the ABCA, the food source’s position demonstrates a conceivable solution for the
optimization problem. The nectar measure of a food source proportionates to the fitness
of the solution [8]. The colony of the artificial bees is subdivided into three groups namely
employed bees, onlooker bees, and scout bees. The employed bees and onlooker bees are
equal to the number of food sources. The employed bees randomly search for the position
of a food source in the search space. They further communicate their experience with the
onlooker bees to assist them in the searching process. Once the food is exhausted, the scout
bees randomly search the food source by its internal motivation [8].

ABC is an iterative procedure alike other population-based metaheuristic algorithms.
For a complete execution, it performs cycles of the four phases namely, initialization of
the swarm phase, employed bee phase, onlooker bee phase, and scout bee phase [13]. The
explanation of these phases is presented in succeeding sections.

2.1.1 Initialization of the swarm phase

At first, ABC generates an evenly scattered initial population of N solutions where every
solution or food source x; (i=1, 2, . . . ; N) represents a vector of dimension D. Here, D
denotes the total decision variables of the optimization problem and z; denotes the i** food
source of the population. The food sources are originated by the following equation 2.1:

Tij = Tminj + rand[O, ]-](xmuwj - xminj) (21)

The limits of x; are Tmin; and Tmqq; in jth direction further, [0, 1] represents an evenly
scattered arbitrary number in the range [0, 1].
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2.1.2 Employed bee phase

In this duration, the current solution is updated relied on the information furnished by
the experience of the individual and the fitness value of the newly generated solution i.c.
nectar measure. If the fitness value of the new solution is higher in comparison with the old
solution, the bee replaces its position with the new one and rejects the old one [13]. For t"
candidate solution the position update equation is

vij = Tij + 03 (Tij — Tij) (2.2)

Where, k € {1,2,...,N} and j € {1,2,..., D} are arbitrarily selected indices, £ must be

distinct from ¢, and ¢;; is an arbitrary number amid [-1, 1].

2.1.3 Onlooker bee phase

The employed bees share their knowledge with onlooker bees waiting in the hive. The
onlooker bees look over the received knowledge and they choose a food source according to
the probability value which is defined as a function of fitness. The probability p; may be
evaluated as equation 2.3.

0.9 x fit;

;= 0.1 2.3
pi mazx fit + (23)

Where, fit; depicts the fitness value of the i solution and mazxfit is the maximum
fitness value in the swarm. Now, it creates a modification in the position in its memory and
checks for the fitness of the candidate source like employed bees did earlier. If the new fitness
is higher than that of the previous one, the bee memorizes the newly generated position and
overlooks the old one.

2.1.4 Scout bee phase

The food source is thought to be neglected if the position of a food source is not modified
up to a predetermined limit i.e number of cycles and then the scout bee phase begins. In
this duration, the food source is substituted by an arbitrarily picked food source within the
specified region. Assume that the neglected food source is z; and j € {1,2,..., D} then
the scout bee substitutes this food source with z;. This execution can be characterized as
equation 2.4.

Tij = Tminj + rcmd[(), 1]('rmazj - xminj) (2.4)

The limits of z; are Tyin; and Tmez; in j7 direction further, [0, 1] represents an evenly

scattered arbitrary number in the range [0, 1].

2.1.5 Main steps of ABCA

The searching mechanism of ABCA consists of three control parameters namely, total food
sources (N), the threshold limit, and the total number of cycles. The ABC is demonstrated
as per Algorithm 2.1:



Algorithm 2.1 ABC Algorithm (ABCA) Structure:

ABCA variables initialization
while Criteria for termination do

« Phase 1: Employed bee Step

« Phase 2: Onlooker bee Step

« Phase 3: Scout bee Step

« Phase 4: Identify the best solution

end while
Output the best solution available in the swarm

2.2 Significant advancements in ABCA

The ABC is a significant contribution since it’s inception, the researchers have been con-
tinuously working to refine the performance of ABC to make it more efficient. As per the
available literature, the studies on ABC may be categorized into three subfields:

e Introducing new strategies/phases
e Hybridization with other algorithms
e Incorporation of LS strategies

The significant contribution in this field is tabulated.

2.3 PSO Algorithm

Particle Swarm Optimization Algorithm (PSOA) is a swarm intelligence based strategy
which is designed while taking inspiration from the birds flocking behavior. PSOA consists
active, interactive individuals with relatively little innate intelligence. In PSO, the entire
group is referred to as a swarm, while each individual is referred to as a particle, which
represents a potential candidate’s answer. By analysing the behaviour of adjacent birds who
looked to be near the food source, the swarm discovers food for itself through social learning.

Initially, each particle is randomly started inside the search area and remembers informa-
tion about its personal best position, pbest, swarm best position, gbest, and current velocity,
V, with which it is travelling. Each particle adjusts its location based on these three vari-
ables. In this manner, whole swarm moves in better direction while following collaborative
trail and error method and converges to single best known solution.

The " particle of the swarm is represented by a D-dimensional vector, X; = (1, T, ..., TiD ),
in a D-dimensional search space. Another D-dimensional vector V; = (v;1,v;2, ..., U;p) T€p-
resents the velocity of this particle. P; = (pi1,pi2, ..., pip) is the previously best visited
place of the i particle. g is the index of the best particle in the swarm. For movement, the
PSO swarm employs two equations: the wvelocity update equation and the position update



Table 2.1: ABC modifications: Introducing new strategies

Year/Author | Title Research Contribution

Zhu et. al | “G-best guided ABC for nu- | Incorporates the information of global best

(2010) [9] merical function optimization” | (gbest) solution into the solution search equa-
tion to improve the exploitation.

Minghao Yinet | “Modified artificial bee colony | Three mutation operations with local search in

al. (2011) [14]

algorithm based on mutation
operations”

ABC.

Yu Liu et.al | “Improved ABCA with mutual | It adjust the produced candidate food source
(2012) [15] learning” with the higher fitness between two individuals
selected by a mutual learning factor.
Kazunori “Experimental Evaluation of | Two main improvements are adopted: (1) a
Mizuno et. al | Artificial Bee Colony with | hybrid algorithm with greedy local search tech-
(2013) [16] Greedy Scouts for Constraint | nique, called GSAT is combined and (2) in the

Satisfaction Problems”

scout bee phase, greedy scout bees are intro-
duced.

Bansal et al.

“Self-adaptive artificial bee

A adaptive strategy is developed.

(2014) [17] colony”
Alkin et.al | “An Enhanced Artificial Bee | A new solution acceptance rule is proposed
(2015) [18] Colony Algorithm with So- | where, instead of greedy selection between old

lution Acceptance Rule and
Probabilistic Multisearch”

solution and new candidate solution, worse
candidate solutions have a probability to be
accepted.

Lie et al.
(2016) [19]

“Artificial bee colony algo-
rithm with memory”

A memory mechanism is developed in which a
bee memorizes its previous successful experi-
ences of foraging behaviour.

Xiang et al
(2018)[20]

“An improved artificial bee
colony algorithm based on the
gravity model”

Inspired by the gravity model, an attractive
force model is proposed for choosing a better
neighbor of a current individual to improve the
exploitation ability of ABC.

Bajer et al
(2019) [21]

“An effective refined ABCA for
numerical optimisation”

Introduces a new solution update equation
and an extended scout bee phase focusing the
search on more prominent solutions without
introducing new control parameters.

Santana et al.
(2019) [22]

“A novel binary artificial bee
colony algorithm”

Presents a novel mechanism which limits the
number of dimensions that can be changed in
the employed and onlookers bees phase.

equation. The velocity of the i*" particle is updated by solving the velocity update equation
(2.5). Equation (2.6) is used to update the position.

vij = Vi + cr1(pij — wij) + cara(pg; — Tiz) (2.5)

Tij = Tij + Vij (2.6)

where 7 = 1,2,...,D represents the dimension and ¢ = 1,2,...,.S represents the particle
index. S is the swarm’s size, and c1 and ¢2 are constants (typically ¢; = ¢2), often known as
cognitive and social scaling parameters or simply acceleration coefficients, respectively. 71
and o are uniformly distributed random numbers in the range [0, 1].

There are three terms on the right hand side of the velocity update equation (2.5). The
first term, v;j, reflects the particle’s memory of its previous movement direction, which
may be thought of as a momentum term that prevents the particle from abruptly reversing
direction. The second term, ¢i71(ps; — x;), refers to the cognitive component of persistence,
which pulls particles back to their previous optimum condition and enables swarms to explore
locally. The last term, cor2(pgj — 245), is referred to as the social component and is in charge
of global search. Individuals might use it to compare themselves to others in their peer
group. The following is a description of the Pseudo-code for Particle Swarm Optimization:
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Table 2.2: ABC modifications: Hybridization with other algorithms

Year/Author | Title Research Contribution
Ali R.Yildiz | “A new hybrid artificial bee | ABC is hybridized with Taguchi method to ob-
(2013) [23] colony algorithm for robust op- | tain better performance.

timal design and manufactur-

i}

ing”

Farahani et al.
(2014) [24]

“A hybrid artificial bee colony
for disruption in a hierarchi-
cal maximal covering location
problem”

ABC is hybridized with 2-opt as a local search
to find the local optimum in each iteration.

Li et al. (2015)
25]

“Solving the large-scale hybrid
flow shop scheduling problem
with limited buffers by a hy-
brid artificial bee colony algo-
rithm”

A novel hybrid algorithm (TABC) that com-
bines the artificial bee colony (ABC) and
tabu search (TS) to solve the hybrid flow
shop (HFS) scheduling problem with limited
buffers.

Gao et al
(2016) [26]

“Enhanced ABCA through dif-
ferential evolution”

Global best ABC and DE algorithm are hy-
bridized to achieve the better performance.

Jadon et al
(2017) [27]

“Hybrid artificial bee colony
algorithm with Differential
Evolution”

A hybrid algorithm (HABCDE) based on ABC
and DE is proposed.

Meng et al
(2018) (28]

“A hybrid artificial bee colony
algorithm for a flexible job
shop scheduling problem with
overlapping in operations”

A dynamic scheme is introduced to fine-tune
the search scope adaptively. A modified mi-
grating birds optimisation algorithm (MMBO)
integrated into the search process.

Wang et al
(2019) [29]

“An efficient hybrid artificial
bee colony algorithm for disas-
sembly line balancing problem
with sequence-dependent part
removal times”

A new rule is used to initialize a bee colony
population with certain diversity, and a dy-
namic neighbourhood search method is intro-
duced to guide the employed/onlooker bees to
promising regions. To rapidly leave the local
optima, a global learning strategy is employed
to explore higher quality solutions.

Karaboga et al.
(2019) [30]

“Training ANFIS by using an
adaptive and hybrid artificial
bee colony algorithm (aABC)
for the identification of nonlin-
ear static systems”

An adaptive and hybrid artificial bee colony
(aABC) algorithm is employed in ANFIS
training. The aABC algorithm uses arithmetic
crossover and adaptive neighborhood radius in
the solution generating mechanism.

Li et al. (2019)
(31]

“Hybrid Artificial Bee Colony
Algorithm for a Parallel Batch-
ing Distributed Flow-Shop
Problem With Deteriorating
Jobs”

A novel scout bee heuristic that considers the
useful information that is collected by the
global and local best solutions is investigated.

Initially, two variants of PSOA were published in the literature based on neighbourhood
size: the global version of PSO (PSO-G), which is the original PSO, and the local version
of PSO (PSO-L) [39]. The term p, in the social component of the velocity update equation
(2.5) is the only difference between PSO-G and PSO-L. It refers to the best particle of the
whole swarm in PSO-G, and the best particle of the individual’s vicinity in PSO-L. The
PSO-social G’s network is based on the star topology, which allows for faster convergence
but is more prone to converge prematurely. PSO-L, on the other hand, employs a ring social
network architecture, with smaller regions specified for each particle. It is clear that because
PSO-L has less particle interconnectivity, it is less prone to being caught in local minima,
albeit at the cost of delayed convergence. PSO-G is better for unimodal situations whereas
PSO-L is better for multimodal ones.

The balance between PSO’s exploration and exploitation capabilities is determined by
the velocity update equation. Because no velocity restrictions were set in Basic PSO, par-
ticles distant from gbest will take huge steps in early iterations and are extremely likely to
abandon the search space. The velocity clamping idea was proposed to regulate velocity so
that particle update step size is balanced. When velocity exceeds its boundaries, velocity
clamping is used to keep it there. To prevent velocity clamping and strike a balance between
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Table 2.3: ABC modifications: Incorporation of local search strategies

Year/Author

Title

Research Contribution

Kang et al
(2011)[32]

“Artificial Bee Colony Algo-
rithm with Local Search for
Numerical Optimization”

Hooke and Jeeves pattern search method is
added.

Bansal et al.
(2013) [33]

“Memetic search in artificial
bee colony algorithm”

A new local search phase is integrated with the
basic ABC in which the step size of the best
solution is controlled by golden section search
approach.

Sharma et al.
(2014) [34]

“Power law-based local search
in artificial bee colony”

Power law-based local search strategy is pro-
posed and integrated with ABC.

Sharma et al.
(2016) [35]

“Lvy flight artificial bee colony
algorithm”

A Lvy flight inspired search strategy is pro-
posed and integrated with ABC. New solutions
are generated around the best solution.

Dogan et al.
(2019) [36]

“Improved Self-adaptive
Search Equation-based Arti-
ficial Bee Colony Algorithm
with competitive local search
strategy”

Integrates three strategies into the ABC algo-
rithm: 1. Self-adaptive strategy 2. Competi-
tive local search selection 3. Incremental pop-
ulation size

D. Karaboga et
al. (2014)(37]

“A quick artificial bee colony
(qABC) algorithm and its
performance on optimization
problems”

So, it can be said that onlookers choose their
food sources in a different way from employed
bees. in qABC algorithm, a new definition is
introduced for the behaviour of onlookers.

Neha et al.
(2017)[38]

“Improved local search based
modified ABC algorithm for
TSP problem”

After the scout bee phase, one supplementary
phase in the form of mutation operator (which
is the part of genetic algorithm) is used.

exploration and exploitation, a new parameter called inertia weight [40]was added to the

velocity update equation, as follows:

where inertia weight is denoted by w. In subsequent section, the proposed PSOA is

Vi = w * Vi + ciri(piy — xij) + cara(pg; — Tij)

explained in details.

Algorithm 2.2 PSO Algorithm (PSOA):

PSOA parameters, w, ¢; and co are initialized.

In the search space, initialise the particle locations and velocities.
Individual particle fitness is assessed.
Memorize gbest and pbest;
while Termination condition(s) not true do
for ecach particle, X; do
for cach dimension j, x;; do
(i) Update the velocity v;;;
(i) Update the position z;;;
end for
end for
Calculate the fitness of the updated particles.
Through greedy selection approach get new values of ghest and pbest;
end while
Return the solution to the particle with the best fitness;
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2.4 Recent Modifications in Particle Swarm Optimiza-

tion Algorithm

The PSO is now one of the most commonly used optimization techniques. Advances on PSO
are end less, here we classify all the modifications in two different classes. The categorisation
is as follow:

1. Modifications of PSO, including bare-bones PSO, chaotic PSO, fuzzy PSO, quantum-
behaved PSO, opposition-based PSO and other significant modifications,

2. Hybridization of PSO with other nature inspied algorithms including ABC, ACO, DE,
GA, artificial immune system (AIS), Tabu search (TS), simulated annealing (SA),
biogeography-based optimization (BBO), and harmonic search (HS),

2.4.1 Modifications in PSO

Jau et al.[41] proposed a modified quantum-behaved particle swarm optimization for param-
eters estimation of generalized nonlinear multi-regressions model based on Choquet integral
with outliers. They modified the popular variant of quantum-behaved PSO and used a high
breakdown regression estimator and a least-trimmed-squares method to eliminate the influ-
ence caused by observations containing outliers.Jamalipour et al. [42] presented QPSO with
differential mutation operator (QPSO-DM) for optimizing WWER-1000 core fuel manage-
ment. The results showed that QPSO-DM performs better than the others. Bagheri et al.
[43] used QPSO to forecast financial time series, especially for the foreign exchange market.
Tang et al. [44] proposed an improved QPSOA for continuous nonlinear large-scale problems
based on memetic algorithm and memory mechanism. The memetic algorithm was used to
make all particles gain some experience through a local search before being involved in the
evolutionary process, and the memory mechanism was used to introduce a bird kingdom
with memory capacity, both of which can improve the global search ability of the algorithm.
Davoodi et al. [45] proposed a new approach, based on a hybrid algorithm combining of
improved QPSO and simplex algorithms. QPSO was the main optimizer of algorithm, which
can give a good direction to the optimal global region. Nelder-Mead simplex method was
used as a local search to fine-tune the obtained solution from QPSO.

J Kennedy proposed a varaint of PSO namly bare-bones PSO (BBPSO) [46]. In which
the velocity and position update rules are substituted by a procedure that samples a para-
metric probability density function. Zhang et al. [47] used both mutation and crossover
operators of DE algorithm to modify original BBPSO in order to update certain particles
in the population. The performance of the resulting algorithm was tested on 10 benchmark
functions and applied to 16 vapor-liquid equilibrium problems. Zhang et al. [48] analyzed
the sampling distribution in BBPSO, based on which they propose an adaptive version in-
spired by the cloud model, which adaptively produced a different standard deviation of the
Gaussian sampling for each particle according to the evolutionary state in the swarm, which
provided an adaptive balance between exploitation and exploration on different objective
functions. Zhang et al. [49] proposed three global optimization algorithms for phase and
chemical equilibrium calculations, which played a significant role in the simulation, design,
and optimization of separation processes in chemical engineering. The proposed algorithms
were unified BBPSO (UBBPSO), integrated DE (IDE), and IDE without Tabu list and
radius (IDEy).
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Chaos theory have been integrated with PSO to improve its performance. This type of
PSO variant is called chaotic PSO (CPSO). Chuang et al. [50] introduced chaotic maps into
catfish particle swarm optimization. The proposed method increased the secarch capability
via the chaos approach. Zhang and Wu [51] proposed adaptive CPSO (ACPSO) to train
the weights/biases of two-hidden-layer forward neural network in order to develop a hybrid
crop classifier for polarimetric synthetic aperture radar images. Dai et al. [52] proposed
a novel adaptive chaotic embedded PSO (ACEPSO) and applied it in wavelet parameters
estimation. ACEPSO embedded chaotic variables in standard PSO and adjusted parameters
nonlinearly and adaptively. It also estimated particles whether being focusing or discrete
by judging the population fitness variance of particle swarm and average distance amongst
points; then chaotic researching was applied to escaping from premature convergence. Li et
al. [53] proposed a novel chaotic particle swarm fuzzy clustering (CPSFC) algorithm based
on a new CPSO and gradient method. The new CPSOA is the combination of adaptive
inertia weight factor (AIWF) and iterative chaotic map with infinite collapses (ICMIC) based
chaotic local search. The CPSFC algorithm utilized CPSO to search the fuzzy clustering
model, exploiting the searching capability of fuzzy c-means (FCM) and avoiding its major
limitation of getting stuck at locally optimal values. Meanwhile, gradient operator is adopted
to accelerate convergence of the proposed algorithm.

In order to make PSO more powerful, it was combined with fuzzy sets theory. This type
of PSO variant is called fuzzy PSO (FPSO). Juang et al. [54] proposed an adaptive FPSO
(AFPSO) algorithm. The proposed AFPSO utilized fuzzy set theory to adjust PSO acceler-
ation coefficients adaptively and was thereby able to improve the accuracy and efficiency of
searches. Incorporating this algorithm with quadratic interpolation and crossover operator
further enhanced the global searching capability to form a new variant called AFPSO-Q1.
Alfi and Fateh [55] presented a novel improved FPSO (IFPSO) algorithm to the intelligent
identification and control of a dynamic system. The proposed algorithm estimated optimally
the parameters of system and controlled by minimizing the mean of squared errors. The PSO
was enhanced intelligently by using a fuzzy inertia weight to rationally balance the global
and local exploitation abilitics. Every particle dynamically adjusted inertia weight accord-
ing to particles best memories using a nonlinear fuzzy model. Yang et al. [56] proposed a
novel FPSOA based on fuzzy velocity updating strategy in order to optimize the machining
parameters. The proposed FPSOA achieved good results on few benchmark problems and
obtained significant improvements on two illustrative case studies of multipass face milling.

Opposition-based learning (OBL) theory was integrated with PSO, and the new variant
was dubbed opposition-based PSO (OPSO). Dhahri and Alimi [57] proposed the OPSO us-
ing the concept of opposite number to create a new population during the learning process.
They combined OPSO with BBFNN. The results showed that the OPSO-BBFNN produced
a better generalization performance. Wang et al. [58] presented an enhanced PSOA called
GOPSO, which employed generalized OBL (GOBL) and Cauchy mutation. GOBL provided
a faster convergence and the Cauchy mutation with a long tail helped trapped particles
escape from local optima. Dong et al. [59] proposed an evolutionary circle detection method
based on a novel chaotic hybrid algorithm (CHA). The method combined the strengths of
PSO, GA, and chaotic dynamics and involved the standard velocity and position update
rules of PSOs, with the ideas of selection, crossover, and mutation from GA. The OBL
was employed in CHA for population initialization. In addition, the notion of species was
introduced into the proposed CHA to enhance its performance in solving multimodal prob-
lems. Gao et al. [60] proposed a novel PSO called CSPSO to improve the performance of
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PSO on complex multimodal problems. Specifically, a stochastic search technique was used
to execute the exploration in PSO. In addition, to enhance the global convergence, when
producing the initial population, both opposition-based learning method and chaotic maps
were employed.

Some researchers make tentative research on improving the optimization performance of
PSO by other efficient strategies. For example, Chuang et al. [61] proposed a novel catfish
PSO, the mechanism of which is dependent on the incorporation of a catfish particle into
the linearly decreasing weight particle swarm optimization. Unlike other ordinary particles,
the catfish particles initialized a new search from the extreme points of the search space
when the gbest fitness value had not been changed for a given time, which resulted in
further opportunities to find better solutions for the swarm by guiding the whole swarm to
promising new regions of the search space and accelerating convergence. Shi and Liu [62]
proposed a hybrid improved PSO, in which chaos initialization was introduced to improve
the population diversity, and adaptive parameters control strategy was employed to make
it independent from specific problem. Besides, novel acceptance policy based on Metropolis
rule was taken to guarantee the convergence of the algorithm. Zhang et al. [63] proposed a
new adaptive PSO (APSO) that could dynamically follow the frequently changing market
demand and supply in each trading interval. A numerical example served to illustrate the
essential features of the approach.

2.4.2 Hybridization of PSO

PSO was combined with some traditional and evolutionary optimization algorithms in order
to take the advantages of both methods and compensate the weaknesses of each other. This
type of PSO is called hybridized PSO.

Kuo and Hong [64] presented a two-stage method of investment portfolio based on soft
computing techniques. The first stage used data envelopment analysis to select most prof-
itable funds, while hybrid of GA and PSO was proposed to conduct asset allocation in the
second stage. Chen and Kurniawan [65] presented a two-stage optimization system to find
optimal process parameters of multiple quality characteristics in plastic injection molding.
Taguchi method, BPNN, GA, and combination of PSO and GA (PSO-GA) were used in this
study to find optimum parameter settings. Nazir et al. [66] extracted facial local features
using local binary pattern (LBP) and then fused these features with clothing features, which
enhanced the classification accuracy rate remarkably. In the following step, PSO and GA
were combined to select the most important features set that more clearly represented the
gender and thus the data size dimension was reduced.

Tang et al. [67] presented a novel dynamic PSOA based on improved artificial immune
network (IAINPSO). Based on the variance of the populations fitness, a kind of convergence
factor was adopted in order to adjust the ability of secarch. The experimental results showed
that not only did the new algorithm satisfy convergence precision, but also the number of
iterations was much less than traditional scheme and had much faster convergent speed, with
excellent performance in the search of optimal solution to multidimensional function. Zhang
et al. [68] proposed a more pragmatic model for stochastic networks, which considered not
only determinist variables but also the mean and variances of random variables. In order to
accelerate the solution of the model, they integrated PSO with chaos operator and AIS.

Chen and Chien [69] presented a new method, called the genetic simulated annealing
ant colony system with particle swarm optimization techniques, for solving the TSP. The
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experimental results showed that both the average solution and the percentage deviation of
the average solution to the best known solution of the proposed method were better than
existing methods. Xiao et al. [70] considered the features of the MRCMPSP problem. They
employed ant colonys labor division to establish a task priority-scheduling model firstly.
Then, they used improved PSO to find out the optimum scheduling scheme. The approach
integrating the above two algorithms had abilities of both local search and global search.

El-Abd [71] tested a hybrid PSO and ABC algorithm on the CEC13 testbed. The hy-
bridization technique was a component-based one, where the PSOA was augmented with an
ABC component to improve the personal best of the particles. Sharma et al. [72] proposed a
variant called Local Global variant ABC (LGABC) to balance the exploration and exploita-
tion in ABC. The proposal harnessed the local and global variant of PSO into ABC. The
proposed variant was investigated on a set of thirteen well-known constrained benchmarks
problems and three chemical engineering problems, which showed that the variant can get
high-quality solutions efficiently. Kiran and Gndz [73] presented a hybridization of PSO and
ABC approaches, based on recombination procedure. The global best solutions obtained
by the PSO and ABC were used for recombination, and the solution obtained from this
recombination was given to the populations of the PSO and ABC as the global best and
neighbor food source for onlooker bees, respectively.

Maione and Punzi [74] proposed a two-step design approach. First, DE determined the
fractional integral and derivative actions satisfying the required time-domain performance
specifications. Second, PSO determined rational approximations of the irrational fractional
operators as low-order, stable, minimum-phase transfer functions with poles interlacing ze-
ros. Extensive time- and frequency-domain simulations validated the efficiency of the pro-
posed approach. Fu et al. [75] presented a hybrid DE with QPSO for the unmanned acrial
vehicle (UAV) route planning on the sea. It combined DE algorithm with the QPSOA in an
attempt to enhance the performance of both algorithms. Experimental results demonstrated
that the proposed method was capable of generating higher quality paths efficiently for UAV
than any other tested optimization algorithms.

2.5 Research gaps and objectives

This section represents the research gaps that are identified based on the inherent drawbacks
reported in the reviewed literature of the ABC and PSOA. Further, the objectives are devised
based on identified research gaps.

2.5.1 Research gaps

Following research gaps are identified based on extensive literature review:

1. If a population based algorithm is capable of balancing between exploration and ex-
ploitation of the search space, then the algorithm is regarded as an efficient algorithm.
From this point of view, basic ABC is not an efficient algorithm [8, 76, 6]. Dervis
Karaboga and Bahriye Akay [76] compared the different variants of ABC for global
optimization and found that ABC shows a poor performance and remains inefficient
in exploring the search space. The problems of premature convergence and stagna-
tion is a matter of serious consideration for designing a comparatively efficientl] ABC
algorithm.
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. In ABC, the step size plays a vital role in modifying the potential solution within

the current swarm. The step size is a function of an arbitrary number ¢;; € [—1,1],
current solution, and an arbitrarily chosen neighbouring solution. The caliber of the
modified solution relies on this step size. The large gap between the current solution
and arbitrarily chosen solution with a high absolute value of ¢;; represents that the step
size is too large, in this case, the modified solution may outpace the actual solution.
Further, the lesser step size may decrease the convergence rate of ABC algorithm
9, 7, 13].

. Most of the population based stochastic algorithms have the inherent drawback of

premature convergence. PSO is not exceptions. Any population based algorithm is
regarded as an efficient algorithm if it is capable of balancing between exploration
and exploitation of the search space or is fast in convergence and able to explore the
maximum area of the search space. From this point of view, researchers suggested that
PSO is not away from the risk of premature convergence [77][78]. The problems of
premature convergence and stagnation is a matter of serious consideration for designing
a comparatively efficient PSOA.

. Different Pseudo random search algorithms have optimized the different standard

benchmark problems at different extents. This inspires researchers to develop new
efficient or more hybrid algorithms, which could optimize as many functions as possi-

ble with better effectiveness and efficiency as compared to the existing algorithms.

. As there is no fully efficient nature-inspired algorithms so it is highly required to

develop a new efficient nature-inspired algorithm compared to the existing algorithms.

. Different population based Psecudo-intelligent random search algorithms could optimize

the given standard benchmark functions to different extents. This inspires researchers
to develop more and more hybrid algorithms, which could optimize as many functions
as possible with better effectiveness and efficiency.

2.5.2 Objectives

Objectives are formulated according to the research gaps as identified. In the proposed

methodology, designed Objectives are as follows.

1.

2.

Modification in existing nature-inspired algorithms.

Development of new nature-inspired algorithm.

. Testing the modified or newly developed algorithms over well-known benchmark opti-

mization problems.

. Implement the existing or modify or newly developed algorithms to solve real world

complex optimization problem like job shop scheduling problem (JSSP), single machine
total weighted tardiness problem (SMTWTP) etc.

2.6 Research methodology

This section illustrates the complete research methodology which is adopted to carry out

the research work. Every step of the research process is briefly described in Fig. 2.1.
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CHAPTER 3

LIMACON INSPIRED ARTIFICIAL BEE COLONY
ALGORITHM FOR NUMERICAL OPTIMIZATION



Chapter 3

Limacon inspired artificial bee
colony algorithm for numerical

optimization

The artificial bee colony algorithm (ABCA) has established itself as a signature algorithm
in the area of swarm intelligence based algorithms. The hybridization of the local search
technique enhances the exploitation capability in the search process of the global optimiza-
tion strategies. In this chapter, an effective local search (LS) technique that is designed by
taking inspiration by limacon curve, is incorporated in ABCA and the designed strategy is
named Limacon inspired ABC (LABC) algorithm. The exploitation capability of the LABC
strategy is tested over 18 complex benchmark optimization problems. The test results are
compared with similar state-of-art algorithms and statistical analysis shows the LABC can
be considered an effective variant of the ABC algorithms to solve the complex optimization
problems.

This chapter provides detailed descriptions of LABC and its applications in engineering
optimization. Section 3.3 presents the proposed Limacon inspired ABC. Further, the Ex-
perimental Setup and Computational outcomes are described in section 3.4. Finally, the
chapter is concluded in section 3.5.

3.1 Introduction

The swarm intelligence (SI) derived techniques are impressive methods to deal with complex
optimization problems. The ST based strategies do rely upon the social intellectual conduct
of natural species. Artificial bee colony algorithm (ABCA) is a prominent SI technique,
developed by taking inspiration from the intelligent communication of honey bees 79, 7]. In
the past, the ABCA has been applied to many real-world complex optimization problems
but it also suffers the common problems of SI based optimization techniques like stopping
to move at the global optima and skipping the true solution due to high explorative nature
of the solution search process[8, 80, 81, 17, 34].

The local search (LS) hybridization with the global search optimization algorithms boosts
the exploitation capability of the global search algorithms which further decreases the chance
of skipping the true solution. So, to enhance the local searchability in the ABCA solution
search process, in this article a limacon arc inspired LS (LLST) hybridized with ABCA.
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The hybridized algorithm is titled as Limacon inspired artificial bee colony (LABC) algo-
rithm. The solution searchability of the proposed LABC is evaluated through numerous
experimentations in form of accurateness, reliability, and consistency.

3.2 Artificial bee colony algorithm

Artificial bee colony algorithm (ABCA) is a significant strategy in the field of SI centered
strategies. ABCA was proposed by D. Karaboga in the year 2005 [4]. It is motivated by
the food foraging activities of the honey bees. There are three types of honey bees in the
colony of bees that are employed honey bees, onlooker honey bees, and scout honey bees.
At the initial stage, employed honey bees go for searching the food sources. They collect the
nectar with all the associated information and return to the hive. They transfer knowledge
associated with the food sources with the onlooker honey bees staying at the hive. Scout
honey bees search the food sources randomly depending upon the internal motivation. Like
other meta heuristic approaches, ABCA is also an iterative process that consists of following
cycles of four stages:

3.2.1 Initialization stage:

The initialization of all the N solutions take place during this stage in the D dimensional
space as per the lower bound and upper bound of all the decision parameters of the opti-
ith

mization problem. The initialization for w; (** candidate solution where i = 1.....N) is as

per the following equation 3.1.
Wij = Wiowj + rand[(), 1](wuppev”j - wlowj) (3.1)

where, Wjow; and wypperj respectively represent bounds of w; in j*h direction further, rand|0,
1] is an evenly scattered arbitrary number in the bound 0 to 1.

3.2.2 Employed honey bee stage:

During the employed honey bee stage, each solution of the search space is updated as per
the equation 3.2. The solution is modified based upon the information obtained from any
arbitrary solution of the search region. The fitness value of the newly produced solution
(nectar amount) is calculated [13]. If the fitness value of the newly produced solution is
greater than that of the previous solution, the new solution is selected for the next generation
and the old one is discarded. Equation 3.2 represent position update equation for the 7**
candidate solution.

Wi = wij + i (Wij — Wneigh;) (3.2)

Where, neigh € {1,2,..., N} and j € {1,2, ..., D} are arbitrarily selected indices, neigh must

be distinct from ¢, and ¢;; is an arbitrary number between [-1, 1].

3.2.3 Onlooker honey bee stage:

When all the employed honey bees complete their task, they share all the information regard-
ing the nectar with the onlooker honey bees. Onlooker honey bees analyze the information
received from employed honey bees and select a food source based on a probability value
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Prob;. The probability Prob; is a fitness function that may be calculated using the equation
3.3.

Fitness;

Prob; = (3.3)

SN Fitness;
where Fitness; denotes the fitness value associated with the i*" solution. A solution’s
location is updated based on its probability value, just as it was in the previous phase. The
freshly created solution’s fitness value is calculated. The answer for the following generation
is chosen using a greedy selection method. For the following generation, the best-fitting
option is chosen.

3.2.4 Scout honey bee stage:

When a food supply does not change its location up to a certain point, the Scout honey bee
stage is triggered. In this scenario, the abandoned food supply and the bee that is linked
with it are referred to as scout honey bees. In the search space, that food source has been
re-initialized. If w; and j € {1,2,..., D} are the rejected food sources, the food source is
re-initialized according to the equation 3.4:

Wij = Wiowj + rand[O, ]-](wupperj - wlowj) (3.4)

3.3 Limacon inspired ABCA

According to the literature, the ABCA has issues with early convergence, stagnation, and oc-
casionally being unable to find the real solution to an optimization problem citezhu2010gbest.
LS methods, control settings, and hybridization with other search strategies have all been
used in the past to improve the solution searchability of ABCA [82, 5].

Recently, a Limacpninspired local search (LLST) technique developed from the Limaconarc
equation was published in the literature ([83]). A Limacon is shown in LLST as a roulette
traced by the locus of a point on the perimeter of a circle rolling around the periphery of
another circle of equal radius. It’s also known as the roulette effect, which occurs when
a circle spins around another circle with half its radius, resulting in the little circle being
trapped within the larger circle. The natural species limacon, more often known as a snail,
inspired this mathematical curve. The limaconvertical and horizontal axis contour formulae

are shown in equations 3.5and 3.6, respectively, [84].

z =pEqsing (3.5)

z = p £ qcosp (3.6)

The limacon’s distance from the beginning point is marked by z, two constants are denoted
by p and ¢, and the angle of revolution is denoted by phi. The value of ¢ determines the
curve’s transient phases; ¢ = 0,1, and > p, respectively, represent a circular, cardioid, and
noose curve.

The value of ¢ is the foundation for the curve’s transient phases. For g =0to ¢ =1, a
circle emerges, and for ¢ > p, a noose on a curve appears.

The position update equation is formed using equation 3.5 with minor modifications in
the suggested approach. As seen in equation 3.7, the group’s best solution has an opportunity
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to update position during LS.

Wnew = Whest =+ (wbest - wneigh) X bln((b) (37)

Throughout the local searchability of the suggested method, wyest and w,ew are the
location of best solution and modified location of best position, respectively. The revolution
angle is represented by the word phi. The community influence component is represented
by the expression (wpest — wneigh). The value of phi is calculated as follows:

T C

¢:§X(1_?Z) (3.8)

Cy and T, arc the current and total LS gencrations counts, respectively. The value of
Ty is determined through a thorough investigation, as shown in the section 3.4. Algorithm
3.1lillustrates the LLST approach.

Algorithm 3.1 Limacon Local Search Technique(LLST):

wpest is the swarm’s best solution, and Min f(x)is the input function that has to be
optimised.
Set the counter for local search generation C; = 0 and the total number of local search
generations Tg;
while Cy < T, do
Using the equation 3.8, find the value of phi.
Produce two new solutions wpew1 and wpews through Algorithm 3.2.
Determine the f(wpew1) and f(wyew2) Objective values.
if f(Wnew1) < f(Wpest) then
Whest = Wnewl;
else if f(Wnew2) < f(Wpest) then
Whest = Wnew?2+
end if
end while
Return wpes:.

As stated in Algorithm 3.1, the step size decreases as phi increases. In either a positive
or negative direction, the value of phi ranges from 90° to 0°.

The lower step size is shown by the less angular step. This means that the neighbouring
search space of the best solution is used during the local search operation.

Algorithm 3.2 New particle generation:

Input Sign and the swarm’s best particle wpes;-
Choose a solution wreign at random from the population that is best # k.
for j=1to D do
if R(0,1) < ¢, then
Wnewj = Whestj
else
Wnewj = Whestj S’Lg’l’L (wbestj - wneighj) X sing:
end if
end for
Return wyeq

In Algorithm 3.2 ¢, is the perturbation rate that controls the significance of disturbance
in the best partcile. R(0, 1) is a random integer with a uniform distribution in the range 0
to 1.

In ABCA, the introduced state is put after the scout bee state. The remaining phases
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Algorithm 3.3 Limacon ABC:

Parameter initialization;
while Stopping criteria do
Step 1: Basic ABC Steps.
Step 4: LLST Phase using Algorithm 3.1.
end while
Output the best particle.

are the same as in the basic form of ABCA. The suggested strategy’s primary contribution is
to improve ABCA'’s exploitation capabilities. Algorithm 3.3demonstrates the created LABC
algorithm.

3.4 Results analysis

18 different benchmark numerical optimization functions (fn; to fn,s) are chosen to assess
the execution of the expected LABC method, as shown in Table 3.1 [33].
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Table 3.1: Benchmark Set D: Dimensions, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable, AE: Acceptable Error

Objective function search Optimum Value D AE C
Range
Iny(z) = MMI_ z; [-5.12, 5.12] F0 =0 30 | 1L.0E 05 | S, U
fny(z) = MUSH_ @.QSV» ) [-5.12, 5.12] F0) =0 30 | 1.0 05 | S, M
fny(z) = 10D + 307 [#2 — 10 cos(2mas)] [-5.12, 5.12] 76 =0 30 | 1uE 05 | N, M
frg(z) = MMLHH |a.sin . + 0. Has_ [-10, 10] F(0) =0 30 | LuE Vs | S, M
fns(z) HMUUHaK IQ.ZMU —1 €08 5mz.) + 0. Hb -1, 1] J(@ =-Uxu1 30 | 1tus_us | S, M
fng(z) = MMI_ @+ AMUSI_ :ﬁv + AMMI_ Ev [-5.12 5.12] J@O) =0 30 | Lur vz | N, M
fn.(z) = M A&suTi.L o + &iLuf. +J [-1, 4] J(@ =0 30 | LUK —Ub | U, N
fns(z) =1 — cos(2m MU ~,x;) +0.1( MU ~.x) [-100, 100] F(@ =0 50 | Lum_ul | Ny M
fny(z) = MWHH |22 |7 -1, 1 (@ =0 30 | LuE _us | S, M
U1 (wF+af )y +0.50w41) -
fn() ==>22, | exp L x I [-5, 5] J@ = D1 10| 10s 05 | N, M
fru(z) = MUU (2 —1)° ) L 1-30, 30] J(1.2,3,..,0)=0 30 | 1.0E 05 | S, U
%SEA&V = ?wl&hAHl&uv_ + E MmthﬁlHuzu+~m.mwm|&;~|&wiu [-4.5, 4.5] F(3,u5) =0 2 LUE —Ub | N, M
fnas(z) = pla)(1 .w@?:vv + [(z1 + 50p(z2)(1 — 2p(z1)))| + |(z2 + 50(1 — 2p(z2)))| [-100, 100] £(0, 50) =0 2 | tue s | NyMm
%SEA&V = MWH »MM.E - _.I_”stH nOmA$v + 1+ ,\Sp? z = AR. - Qv, T = —RT&N,::HC_, [-600, 600] F(0) = frias — —180 W | tug —us | N, M
0= [o1,02,...00]
fris(@) = —20exp(—0.24/ 5 37 | 22) — exp(5 Mscnu cos(2m2;)) + 20 + e + foias, 2 = | 32, 32 £(0) = foras — 140 10| 108 05 | s, M
(x—0), z= L1, Tz, &tv cl?fc& ........
fnie(r) = 10°27 + x5 — GS +3)* +107° (2] + auv 1-20, 20| 1(0,15) = £(0, _15) 2 | 50E 01 | N, M
24777
%SZA&V M A§ - “Svu [-10, 10] J(3 13,15 16,0 78) 3 LUE U3 | U, N
0.4FE 04
fryg(z) = —[AT]2, sin(z; — 2) + [T, sin(B(z; —2))], A=2.5,B =5,z =30 0, 180| FO0F )= (A+1) 10 | 1.0E 02 | N,M




To certify the competitiveness of the introduced LABC approach, a comparative analysis

is performed amid LABC, ABCA, and 4 of its significant revised versions, namely best so
far ABC (BSFABC) [85], black hole ABC (BHABC) [86], Gbest guided ABC (GABC) [9],

levy flight ABC (LFABC) [35], and LSMO [83]. The experimental setting is listed below:

e Simulations/run =100.

e Colony size NP = 50 and Number of food sources N = NP/2.

e limit=D x N [13].

e Parameter setting for all the considered algorithms are kept same as mentioned in their

native research article.

o The value of T; (Total number of local search generation) is decided by experimenta-

tion. The results in the form of sum of success rate are analyzed for tested functions

on distinct values of T,. T, = 18 provides better outcomes (in terms of value of sum

of success) as depicted in Figure 3.1.

Figure 3.1: Sum of success versus (Ty)

The obtained experimental outcomes of all the considered approaches are portrayed in

Table 3.2. The assessment is experimented in terms of four parameters namely, standard

deviation (SD), mean error (ME), average number of function evaluations (AFE), and success
rate (SR) as depicted in Table 3.2. The Table 3.2 demonstrates that the revised LABC
primarily outplays to all the compared significant strategies.

Table 3.2: Result assessment of functions with LABC and other state-of-art algorithms

Test Measure LABC ABC BHABC GABC BSFABC LFABC LSMO
Problem

SD 3.11E-06 1.56E-06 1.44E-06 1.81E-06 2.15E-06 1.73E-06 5.90E-07

ME 3.92E-06 8.48E-06 8.53E-06 8.11E-06 7.49E-06 8.39E-06 9.23E-06
I AFE 12642.32 13963.77 22304.92 14347.5 30063 16733.85 18101.5

SR 100 100 100 100 100 100 100

SD 2.43E-06 2.92E-06 2.63E-06 2.72E-06 3.12E-06 3.02E-06 8.42E-07

ME 1.56E-06 5.46E-06 5.75E-06 5.51E-06 5.31E-06 6.62E-06 8.93E-06
s AFE 481.61 5629.43 8687.05 8388 24524.5 9556.12 2596.5

SR 100 100 100 100 100 100 100

SD 2.79E-06 2.34E-06 2.88E-06 2.75E-06 3.11E-06 2.41E-06 1.40E+01

ME 3.06E-06 7.58E-06 5.79E-06 6.38E-06 4.05E-06 7.18E-06 3.87E+01
e AFE 848.38 39982.67 44384.12 34805 122759.5 40644.63 2015

SR 100 100 100 100 100 100 100

SD 2.67TE-06 2.66E-06 1.60E-06 1.85E-06 6.05E-06 1.03E-05 3.03E-07

ME 4.59E-06 7.82E-06 8.46E-06 8.32E-06 8.03E-06 9.06E-06 9.53E-06
s AFE 1030.21 75594.46 59016.04 54665.5 142277 85238.42 3046.5

SR 100 100 100 100 96 98 100

to be cont’d on next page
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Table 3.2: Result assessment of functions with LABC and other state-of-art algorithms

(Cont.)

Test Measure LABC ABCA BHABC GABC BSFABC LFABC LSMO
Problem

SD 2.56E-06 2.02E-06 2.39E-06 1.91E-06 2.43E-06 2.22E-06 5.68E-02

ME 2.79E-06 8.33E-06 7.72E-06 7.83E-06 6.97E-06 7.84E-06 2.22E-02
frs AFE 11638.34 13632.1 35006.99 15420.5 32039 17862.88 13043.5

SR 100 100 100 100 100 100 100

SD 2.63E-03 1.61E401 1.84E+401 1.58E+401 1.22E401 1.57E401 1.80E-02

ME 5.43E-03 6.11E+01 1.01E+02 9.76E+01 8.38E+01 1.13E4-02 2.20E-02
fre AFE 182821.42 | 200025.72 | 200000.31 200000.01 200000 200040 186434

SR 34 0 0 0 0 0 34

SD 2.96E-06 1.60E-06 2.06E-06 1.97E-06 1.99E-06 1.58E-06 6.06E-07

ME 3.42E-06 8.36E-06 8.04E-06 7.86E-06 7.73E-06 8.55E-06 9.14E-06
fra AFE 11634.36 14830.27 23739.99 14076 31207.5 16111.3 15048.5

SR 100 100 100 100 100 100 100

SD 2.31E-01 8.66E-02 4.45E-02 3.35E-02 6.82E-02 4.45E-02 5.53E-02

ME 6.86E-01 9.75E-01 9.33E-01 9.33E-01 9.56E-01 9.39E-01 2.88E-01
frs AFE 93346.93 139235.63 | 94411.64 85618.12 186319.67 101452.43 | 91050

SR 99 57 97 95 73 87 93

SD 3.14E-06 2.83E-06 2.40E-06 2.60E-06 2.72E-06 3.13E-06 1.36E-06

ME 2.85E-06 4.90E-06 6.55E-06 6.12E-06 5.84E-06 5.86E-06 8.38E-06
Fr AFE 11359.31 19776.19 7104.52 9392.5 14434 7523.66 9897

SR 100 100 100 100 100 100 100

SD 2.73E-06 7.33E-02 2.33E-06 2.39E-06 1.99E-01 4.27E-05 6.06E-01

ME 2.94E-06 1.06E-02 7.20E-06 6.83E-06 6.09E-02 1.27E-05 1.40E+00
Frac AFE 10659.72 114061.2 70078.06 47688.66 123141.06 42442.21 19670

SR 100 84 100 100 85 99 100

SD 1.83E-06 2.38E-06 2.33E-06 1.81E-06 2.63E-06 1.97E-06 5.36E-07

ME 7.84E-06 7.44E-06 7.71E-06 7.93E-06 7.11E-06 8.07E-06 9.23E-06
fru AFE 32466.2 23156.54 23504.76 16625.5 40983.5 18653.59 34306

SR 100 100 100 100 100 100 100

SD 2.98E-06 2.73E-06 2.95E-06 2.93E-06 1.69E-05 2.84E-06 2.79E-06

ME 5.35E-06 7.24E-06 5.49E-06 5.33E-06 1.28E-05 7.52E-06 4.86E-06
gL AFE 14849.56 34002.38 7259.59 8701.35 49064.36 3746.11 2753.5

SR 100 100 100 100 92 100 100

SD 3.22E-05 2.73E-05 2.54E-05 2.29E-05 1.98E-04 2.37E-01 2.71E-01

ME 4.58E-05 5.87E-05 6.29E-05 6.36E-05 8.56E-05 6.01E-02 8.01E-02
fras AFE 7467.44 18836.4 11497.4 8726.06 6208.54 17885.73 9745.5

SR 100 100 100 100 99 94 100

SD 1.32E-03 3.02E-03 2.39E-03 7.35E-04 6.18E-03 7.35E-04 2.87E-02

ME 2.72E-04 1.16E-03 8.61E-04 7.90E-05 4.58E-03 8.01E-05 4.05E-02
fra AFE 67282.34 87111.25 91174.8 42366.85 118467.79 40382.88 117491

SR 95 85 88 99 58 99 84

SD 1.54E-06 1.85E-06 2.05E-06 1.28E-06 1.93E-06 1.34E-06 1.03E-06

ME 8.31E-06 8.09E-06 7.68E-06 8.64E-06 8.13E-06 8.66E-06 8.83E-06
fras AFE 15737.84 23391.88 71048.93 9321 31326.5 10934.63 24630

SR 100 100 100 100 100 100 100

SD 5.72E-03 5.52E-03 5.77E-03 5.37E-03 5.28E-03 5.68E-03 5.55E-03

ME 4.98E-01 4.89E-01 4.91E-01 4.90E-01 4.91E-01 4.91E-01 4.92E-01
Frae AFE 885.19 3145.86 946.24 775 2800.72 687.8 5050

SR 100 100 100 100 100 100 100

SD 2.90E-06 2.97E-06 3.07E-06 2.95E-06 2.64E-06 3.10E-06 2.91E-06

ME 2.15E-03 1.94E-03 1.95E-03 1.94E-03 1.95E-03 1.95E-03 1.95E-03
frag AFE 21458.41 29064.93 4761.02 5094.92 17641.71 3418.07 3092

SR 100 100 100 100 100 100 100

SD 3.18E-03 1.75E-03 1.82E-03 2.42E-03 1.90E-03 1.67E-03 2.94E-01

ME 5.22E-03 7.71E-03 7.78E-03 7.53E-03 7.91E-03 8.35E-03 4.39E-01
fras AFE 35081.83 62307.88 42023.26 49473.76 63543.15 22030.31 71097.5

SR 100 100 100 99 100 100 94

The boxplots investigation in form of AFE is also performed to indicate how the values in

the data are spread out. The interquartile range and median of proposed variant is relatively

small. This shows that proposed variant is fast enough and executes on smoother range in

comparison to other consider significant algorithms.

Further, the convergence speed of the considered algorithms are also evaluated by mea-

suring AFEs. A lesser AFEs reflect greater convergence speed. To eliminate the adverse
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Figure 3.2: Boxplots graphs for average number of function evaluation

Average function evaluations

Table 3.3: Acceleration Rate (AR) of LABC as compare to other state of art algorithms

’lI‘est Prob- | ABCA BHOABC GABC BSFABC LFABC LSMO
ems

i 1.105 1.764 1135 2.378 1324 1.432
fr, 11.689 18.038 17.417 50.922 19.842 5.301
fns 47.128 52.316 41.025 144.699 47.909 2.375
fng 73.378 57.285 53.062 138.105 82.739 2.957
fng 1171 3.008 1.325 2.753 1.535 1.121
frg 1.094 1.094 1.094 1.094 1.094 1.020
fn, 1.275 2.041 1.210 2.682 1.385 1.293
fng 1.492 1.011 0.917 1.996 1.087 0.975
frg 1.741 0.625 0.827 1.271 0.662 0.871
froc 10.700 6.574 4.474 11.552 3.982 1.845
fry 0.713 0.724 0.512 1.262 0.575 1.057
fros 2.290 0.489 0.586 3.304 0.252 0.185
fris 2.522 1.540 1.169 0.831 2.395 1.305
frig 1.295 1.355 0.630 1.761 0.600 1.746
froe 1.486 4.515 0.592 1.991 0.695 1.565
froe 3.554 1.069 0.876 3.164 0.777 5.705
frgq 1.354 0.222 0.237 0.822 0.159 0.144
froe 1.776 1.198 1.410 1.811 0.628 2.027

effect of stochastic nature of the strategies, the stated function evaluations for cach test prob-
lem is averaged over 100 runs. For comparing convergence speeds, we use the acceleration
rate (AR) which is computed as follows:

_ AFFEarco

AR = — 72,
AFEraBc’

(3.9)

where, ALGO € {ABC, BHABC, GABC, BSFABC, LFABC, LSMO} and AR>1 means
that the suggested LABC is speedier than other considered algorithms. To investigate the
impact of AR, the outcomes of Table 3.2 are evaluated and the value of AR is calculated using
equation (3.9). Table 3.3 shows a clear comparison between LABC and other considered
algorithms in terms of AR. Table 3.3 clearly shows that LABC is speedy as compare to all
the considered algorithms.

The algorithms are additionally verified in form of Mann-Whitney U rank sum test
[5] that is applied on AFEs. The examination is performed at 5% noteworthiness level
(a = 0.05) and the upshots for 100 simulations are noted in Table 3.4. In Table 3.4 higher
validate that our recommended LABC is better with respect to the other considered algo-
rithm while lower shows that the compared strategy is superior. The statistical analysis show
that the proposed variant performs well irrespective of the characteristics of the considered
benchmark functions.
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Table 3.4: Mann-Whitney U rank sum test on AFEs of LABC and compared strategies,
TP: Test Problem.

TP LABC LABC LABC LABC LABC LABC
Vs Vs Vs Vs BS- | Vs Vs
ABCA BHABC | GABC FABC LFABC | LSMO
fnq higher higher higher higher higher higher
fng higher higher higher higher higher higher
fns higher higher higher higher higher higher
fny higher higher higher higher higher higher
fng higher higher higher higher higher higher
fng higher higher higher higher higher higher
fne higher higher higher higher higher higher
fng higher higher lower higher higher lower
fng higher lower lower higher lower lower
fnig higher lower higher higher higher higher
fnqg lower lower lower higher lower higher
fnqo higher lower lower higher lower lower
fnys higher higher higher lower higher higher
fniy higher higher lower higher lower higher
fngs higher higher lower higher lower higher
fnie higher higher lower higher lower higher
fniq, higher lower lower lower lower lower
fnqig higher higher higher higher lower higher
Total 17 13 10 16 10 14
no. of +
signs

3.5 Conclusion

Local search (LS) strategies always enhance the performance of the Swarm Intelligence
(SI) based algorithms. In view of this, in this article, a Limacon arc inspired local search
(LLST) strategy is hybridized with the artificial bee colony algorithm (ABCA). The designed
strategy is named Limacon inspired ABC (LABC) algorithm. The solution searchability of
the LABC is tested over various unimodal, multi-modal, separable, non-separable benchmark
test functions, and the performance is evaluated while comparing the results with various
state-of-art algorithms. The obtained outcomes are statistically analyzed through the Mann-
Whitney U rank-sum test, Boxplots, acceleration rates which validates the competitiveness
of the designed strategy.

26



CHAPTER 4
FULLY INFORMED ABC ALGORITHM



Chapter 4

Fully Informed ABC Algorithm

The Gbest-guided Artificial Bee Colony (GABC) algorithm is a latest swarm intelligence
based approach to solve optimization problem. In GABC, the individuals update their
respective positions by drawing inspiration from the global best solution available in the
current swarm. The GABC is a popular variant of Artificial Bee Colony (ABC) algorithm
and is proved to be an efficient algorithm in terms of convergence speed. But, in this strategy,
each individual is simply influenced by the global best solution, which may lead to trap in
local optima. Therefore, in this chapter, a new search strategy, namely “Fully Informed
Learning” is incorporated in the onlooker bee phase of ABC algorithm. The developed
algorithm is named as Fully Informed Artificial Bee Colony (FABC) algorithm. To validate
the performance of FABC, it is tested on 20 well known benchmark optimization problems
of different complexities. The results are compared with GABC and some more recent
variants of ABC. The results are very promising and show that the proposed algorithm is a
competitive algorithm in the field of swarm intelligence based algorithms.

This chapter provides detailed description of fully informed ABC. The proposed
FABC discussed in section 4.2. The experimental setup and result section 4.3 followed by
conclusion in section 4.4.

4.1 Introduction

Swarm Intelligence is one of the recent outcome of the research in the field of Nature in-
spired algorithms[87, 88, 89, 90]. Collaborative trial and error method is the main concept
behind the Swarm Intelligence which enables the algorithmic procedure to find the solu-
tion. D.Karaboga [4] contributed the recent addition to this category known as Artificial
bee colony (ABC) algorithm. The ABC algorithm mimics the foraging behavior of honey
bees while searching food for them. ABC is a simple and population based optimization
algorithm. Here the population consists of possible solutions in terms of food sources for
honey bees whose fitness is regulated in terms of nectar amount which the food source con-
tains. Artificial Bee Colony is made of three groups of bees: employed bees, onlooker bees
and scout bees. The number of employed and onlooker bees is equal. The employed bees
searches the food source in the environment and store the information like the quality and
the distance of the food source from the hive. Onlooker bees wait in the hive for employed
bees and after collecting information from them, they start searching in neighborhood of
that food sources which are having better nectar. If any food source is abandoned then
scout bee finds new food source randomly in search space. While searching the solution of
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any optimization problem, ABC algorithm first initializes ABC parameters and swarm then
it requires the repetitive iterations of the three phases namely employed bee phase, onlooker
bee phase and scout bee phase.

However the ABC achieves a good solution at a significantly faster rate but, like the
other optimization algorithms, it is also weak in refining the already explored search space. It
is shown in literature that basic ABC itself has some drawbacks like stop proceeding toward
the global optimum even though the population has not converged to a local optimum [8] and
it is observed that the position update equation of ABC algorithm is good at exploration but
poor at exploitation [9] i.e, has not a proper balance between exploration and exploitation.
Therefore these drawbacks require a modification in position update equation in ABC. To
enhance the exploitation, Wei-feng Gao et al. [91] improved position update equation of ABC
such that the bee searches only in neighborhood of the previous iteration’s best solution.
Anan Banharnsakun et al. [85] proposed the best-so-far selection in ABC algorithm and
incorporated three major changes: The best-so-far method, an adjustable search radius, and
an objective-value-based comparison in ABC. To solve constrained optimization problems,
D. Karaboga and B. Akay [92] used Debs rules consisting of three simple heuristic rules and
a probabilistic selection scheme in ABC algorithm.

In 2010, Zhu and Kwong [9] proposed an improved ABC algorithm, namely Gbest-
guided ABC (GABC) algorithm by incorporating the information of global best (Gbest)
solution into the solution search equation to improve the exploitation. But as all the indi-
viduals drawing inspiration from the global best solution, there is a enough chance of swarm
stagnation. Therefore, in this chapter, a new position update strategy, namely ”Fully In-
formed Learning” [93] is incorporated in the onlooker phase of GABC algorithm. The pro-
posed algorithm is named is Fully Informed ABC (FABC). The FABC algorithm is tested
on 20 benchmark problems and the results are very encouraging.

4.2 Fully Informed ABC

This section explains the proposed modified ABC algorithm. In ABC, at any instance,
a solution is updated through information flow from other solutions of the swarm. This
position updating process uses a linear combination of current position of the potential
solution which is going to be updated and position of a randomly selected solution as step
size with a random coefficient ¢;; € [—1,1]. This process plays an important role to decide
the quality of new solution. If the current solution is far from randomly selected solution
and absolute value of ¢;; is also high then the change will be large enough to jump the true
optima. On the other hand, small change will decrease the convergence rate of whole ABC
process. Further, It is also suggested in literatures [8, 9] that basic ABC itself has some
drawbacks, like stop proceeding toward the global optimum even though the population
has not converged to a local optimum and it is observed that the position update equation
of ABC algorithm is good at exploration but poor at exploitation. Therefore, to improve
the exploitation capability of ABC algorithm, in 2010, Zhu and Kwong [9] proposed an
improved ABC algorithm called Gbest-guided ABC (GABC) algorithm by incorporating
the information of global best (Gbest) solution into the solution search equation to improve
the exploitation. GABC is inspired by PSO [88], which, in order to improve the exploitation,
takes advantage of the information of the global best (gbest) solution to guide the search by
candidate solutions.
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They made the following changes to ABC’s solution search equation:
vij = Tij + Gij(Tij — Trj) + ij (Y5 — 5) (4.1)

where y; is the j' element of the global best solution, psi;; is a uniform random number
in [0,C], and C is a non negative constant, and the third term in the right-hand side of
equation (4.1) is a new added term called gbest term, and y; is the j** element of the global
best solution. The gbest term can drive the new candidate solution towards the global
best solution, according to equation (4.1), therefore the modified solution search equation
represented by (4.1) can enhance the exploitation of ABC method. It’s worth noting that
the C' parameter in (4.1) is crucial for balancing the exploration and exploitation of the
candidate solution search.

The previous description and equation 4.1show that the global best solution dis-
covered in the present population influences every individual participating in the search
process. This method forces people to follow the best solution discovered in the swarm,
therefore improving the algorithm’s exploitation capacity. The downside of this technique
is the likelihood of swarm stagnation and early convergence.

Individuals change their locations depending on the probability, which is a func-
tion of fitness (see equation 2.3) in the GABC onlooker bee phase. Furthermore, this is
the period in which the swarm may converge around the optimal solution, increasing the
likelihood of premature convergence. As a result, in the observer bee phase of the GABC
algorithm, a novel search method called Fully Informed Learning (FIL) is included to limit
such possibilities in the swarm.

To update its position in the search space, the individual collects input from the
best solution in the current swarm as well as any other nearby solutions in FIL. FIL is
mathematically described by the equation 4.2.

SN
Doper (Tig — Tky)

N + iz (y; — x45) (4.2)

Vij = Tij + dgj

The number of food sources is represented by SN, while the other symbols have their

normal meanings, as stated in equation 4.1. The high fit solutions update their locations by

drawing inspiration from the best solution in the current swarm as well as collecting input

from all other people in the swarm, as shown by this equation. As a result, the current best

answer cannot influence the path of the search process. The exploitation capability owing

to the best solution identified so far can be balanced, as can the exploration capability due
to learning phenomena from all the people in the swarm.

4.3 Results Analysis

This section illustrates how the suggested method performed in terms of accuracy, efficiency,
and dependability.

4.3.1 Test problems under consideration

Twenty mathematical optimization problems (fi to f20) of varying features and complexity
are considered to validate the efficacy of the proposed algorithm FABC (mentioned in Table
4.1). All of these issues occur on a regular basis in nature.
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Table 4.1: Test problems
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Table 4.2: Comparison based on average function evaluations, TP: Test Problem.

TP ABC BSFABC GABC MABC FABC

f1 48726.5 72833 58057 43333 39355

f2 22951.5 32029 28709 22763.5 20618

f3 200000 200000 200000 200005.69 | 200000

fa 20917 31416.5 25721 22992 19971

fs 41646 52966 52650 32888.5 35643

fe 16229 14299 16768 9389 7091

fr 200038.73 | 200033.72 200038.69 | 200014.92 200043.25
fs 82609.49 89613.57 65244.05 65025.88 56265.79
fo 200004.52 200022.17 | 200002.78 194815.12 199579.45
f1o 19662 26586 24291 22549.5 18285

f11 21746 28700 26762 20899.5 18952

f12 200024.66 166272.97 178380.44 164408.83 | 46578.45
f13 188361.32 144391.61 116965.09 187245.43 | 63687.6
f1a 173092.37 178745.99 155110.67 171899.54 139291.22
fis 8997 18238.5 10385 8664 8370

f1e 93520.83 69837.25 42231.9 60493.49 73093.15
fi7 16673 31235 17798 14191.55 13376

f1s 103298.36 | 82223.49 115332.45 121008.11 108465.08
f1o 25134.26 18243.24 6521.4 8570.8 2903.48
f20 62534.5 71096.5 75602 59732 54673

4.3.2 Parameter setting for experiments

The success rate, average number of function evaluations, and mean error derived from the
proposed FABC are all recorded. For the sake of comparison, the results for these test issues
(Table 4.1) were acquired from the basic ABC and newer versions of ABC entitled Best-
So-Far ABC (BSFABC) [85], Gbest-guided ABC (GABC) [9], and Modified ABC (MABC)
[94]. When implementing the proposed and other considered algorithms to solve the issues,
the following parameter settings are used:

¢ Number of executions/run =100.
¢ Number of solutions SN = N P/2[95, 96].
e Limit= D x SN [92, 94] and C' = 1.5 [9].

¢ The algorithm stopping condition is the either 200000 number of function evaluations
or the acceptable error as mentioned in Table 4.1 is achieved.

¢ The parameter values for the other algorithms studied, ABC, GABC, BSFABC, and
MABC, are taken from their original papers.

4.3.3 Reported Results

The numerical results for the benchmark problems of Table 4.1with the experimental settings
provided in section 4.3.2are shown in Tables 4.2, 4.3, and 4.4. In terms of average number
of function evaluations (AFE), success rate (SR), and mean error, these tables demonstrate
the results of the proposed and alternative methods evaluated (ME). Here, SRis the average
number of function evaluations called by the algorithm in 100 runs to reach the termination
condition, and AFFEis the number of times the algorithm attained the function optima with
acceptable error.

After examining the data, it can be concluded that FABC surpasses the other algo-
rithms in terms of accuracy (thanks to ME), dependability (due to SR), and efficiency for
the vast majority of the time (due to AFE). In order to evaluate the algorithms output more
thoroughly, various statistical tests such as the Mann-Whitney U rank sum test, acceleration
rate (AR) [97], boxplots, and performance indices [98]were performed.
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Table 4.3: Comparison based on success rate out of 100 runs, TP: Test Problem.

TP ABC BSFABC | GABC MABC FABC
11 100 100 100 100 100
fe 100 100 100 100 100
fa 0 0 0 0 0
fa 100 100 100 100 100
fe 100 100 100 100 100
fe 100 100 100 100 100
fr 0 0 0 0 0
fe 94 82 100 100 99
fe 0 0 0 27 1
fio 100 100 100 100 100
fi1 100 100 100 100 100
fi2 0 3 2 7 100
fi3 16 45 91 9 96
f1a 20 20 45 29 55
fis 100 100 100 100 100
fie 88 91 99 97 91
fi7 100 100 100 100 100
fis 63 63 44 42 49
fio 100 100 100 100 100
fac 100 100 100 100 100

Table 4.4: Comparison based on mean error, TP: Test Problem.

TP ABC BSFABC GABC MABC FABC
f1 8.63E-06 7.71E-06 8.74E-06 9.51E-06 9.45E-06
f 7.47E-06 7.05E-06 8.09E-06 9.23E-06 8.99E-06
2 9.75E+01 8.50E+01 1.07E4-02 1.47E-01 8.39E-01
fa 7.84E-06 7.39E-06 8.11E-06 9.02E-06 9.07E-06
fe 9.16E-06 8.99E-06 9.16E-06 9.49E-06 9.41E-06
fe 5.16E-06 5.79E-06 6.475-06 8.01E-06 7.55E-06
fr 1.16E4-01 1.00E401 1.06E4-01 9.85E+00 9.29E+00
fe 3.67E-02 5.37TE-02 6.86E-06 8.38E-06 2.64E-03
fe 1.21E4-00 4.39E400 7.09E-01 5.96E-03 7.05E-01
f1o 6.89E-06 6.84E-06 8.32E-06 9.04E-06 9.11E-06
f11 7.33E-06 7.22E-06 7.47E-06 9.18E-06 9.02E-06
fi2 1.39E-01 2.12E-02 2.61E-02 1.02E-02 7.83E-04
f13 1.76E-04 1.46E-04 9.13E-05 2.07E-04 1.14E-04
fia 1.13E4-00 2.68E+00 6.77E-01 7.90E-01 1.22E4-00
fis 7.06E-06 6.66E-06 7.40E-06 8.21E-06 7.77E-06
fie 1.09E-05 3.75E-06 5.62E-06 1.64E-05 7.45E-05
fir 7.93E-06 8.07TE-06 8.39E-06 8.71E-06 8.53E-06
fis 9.00E-07 3.87E-14 5.61E-14 5.74E-14 5.19E-14
f1o 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.94E-03
fac 9.20E-16 7.27E-16 9.31E-16 9.27E-16 9.24E-16




4.3.4 Statistical Analysis

On the basis of SR, AFE, and ME, the algorithms ABC, GABC, BSFABC, MABC, and
FABC are compared. From the findings in Table 4.2, it is obvious that FABC is less ex-
pensive on 14 test functions (f1, f2, fa. fe, fs, f10, fir — fis, f17, f19, f20). FABC ecffectively
balances the exploration and exploitation capacities since these functions encompass uni-
model, multimodel, separable, non separable, lower and higher dimension functions. Over
the test function f16, which is a multimodel non-separable test function, GABC, BSFABC,
and MABC outperform FABC. On test functions fis, which is likewise a multimodel non-
separable test function, BSFABC outperforms FABC. It demonstrates that BSFABC is more
effective at solving multimodel non-separable test problems. For fy test functions, MABC
is less expensive than FABC. When examined independently, FABC outperforms ABC in
18 test functions, MABC and BSFABC in 16 test functions, and GABC in 17 test functions
with mixed features. When the outputs of all functions are combined, the FABC method is
the most cost-effective approach for the majority of functions.

Furthermore, Table 4.3shows that FABC is more trustworthy than the examined
algorithms for f15 — f14 test issues when compared on the basis of success rate. Except for
the test functions fg, f16, and fis, the performance of the FABC method is comparable to
that of the other algorithms studied. Tables 4.2and 4.3show that comparisons on the basis
of AFE and SR are not possible for the test functions f3 and f7. A fair comparison of these
functions may be made by examining mean error (see Table 4.4). The MABC and FABC
perform better than the ABC, GABC, and BSFABC in solving f3 and f7 test problems,
as shown in Table 4.4. The boxplots for average number of function evaluations for all
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Figure 4.1: Average number of function evaluation through Boxplots graph

algorithms FABC, ABC, GABC, BSFABC, and MABC have been shown in Figure ??fig:bp
feval because boxplot [99]can efficiently display the empirical distribution of findings. FABC
is cost effective in terms of function evaluations, as shown by the interquartile range and
median of average number of function evaluations in Figure 6.1.

Though it is obvious from box plots that FABC is more cost effective than ABC,
BSFABC, GABC, and MABC, i.e., FABC’s outcome varies from the others, we need to
do another statistical test to see if there is a significant difference in algorithm output or
if the difference is due to chance. The average number of function evaluations utilised by
the investigated algorithms to solve the different problems is not normally distributed, as
shown by the boxplots in Figure 6.1, therefore a non-parametric statistical test is necessary
to compare the algorithms’ performance. The non-parametric Mann-Whitney U rank sum
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Table 4.5: The Mann-Whitney U rank sum test at a alpha = 0.05 significance level was
used to do a comparison based on mean function evaluations (‘+’ means FABC is

considerably better, ‘-> means FABC is much worse, and ‘=" means there is no significant
difference.), TP: Test Problem.

TP Mann-Whitney U rank sum test TP Mann-Whitney U rank sum test with
with FABC FABC
ABC BSFABC| GABC MABC ABC BSFABC| GABC MABC

f1 + + + + f11 + + + +

f2 + + + + faz + + + +

fe = = = = faz + + + +

fa + + + + f1a + + + +

fs + + + - fe + + + +

fe + + + + fie + - - -

f7 = = = = f1r + + + +

fs + + + + fs + - + +

fo + + + - fie + + + +

f1o + + + + fac + + + +

[100]is a well-established test for comparing non-Gaussian data. This test is conducted
between FABC - ABC, FABC - BSFABC, FABC -GABC, and FABC - MABC in this chapter
at a 5% level of significance (alpha = 0.05).

The results of the Mann-Whitney U rank sum test for the average function evalu-
ations of 100 simulations are shown in Table 4.5. First, we look for a significant difference
using the Mann-Whitney U rank sum test, which determines whether or not the two data
sets are substantially different. If there is no significant difference (i.e., the null hypothesis
is accepted), the sign ‘="appears; if there is a significant difference (i.e., the null hypothesis
is rejected), compare the average number of function evaluations. We use the marks ‘+’ and
‘-” to indicate whether FABC performs fewer or more average function evaluations than the
other methods. As a result, in Table 4.5, a value of ‘4’ indicates that FABC is considerably
better, while a value of *-” indicates that FABC is significantly worse. Out of 80 comparisons,
Table 4.5has 67 ‘4’ indications. As a consequence, FABC outcomes are substantially more
cost efficient than ABC, BSFABC, GABC, and MABC across the test issues evaluated.

Performance indices (PIs) are also generated to compare the investigated algorithms
by providing weighted importance to SR, AFE, and ME [98]. The following equations are
used to compute the PI values for the FABC, ABC, BSFABC, GABC, and MABC:

N

r
(krad + koad + ksab)
—1

1
PI——
N, &

Mft i
) P -, i Sr*>0. . i
Where af = —:“,S:’T", ab =Y ) ;and af = %‘)’
0, if Sr* =0.

i=1,2,..,N,

Sr* shows that number of successful execution of i*" problem.

Tr* shows total number of execution of #** problem.

M f* shows the minimum of AFE which are used to get optimum result of 5 problem.

Af* shows AFE required to get optimum result of ¢** problem.

Mo* shows least error get for the i*® problem.

Ao’ shows mean crror get by the applied approach for the " problem.
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e N, shows the number of benchmark functions (test problems) considered for experi-

ments.

The weights allocated to SR, AFE, and ME are k1, k2, and k3, respectively, where k1 +
k2 4+ k3 = 1 and Olegkl,k2,k3 < 1 To compute the PIs, two variables are given equal
weights, while the remaining variable’s weight changes from 0 to 1, as described in[101].

The following are the outcomes:
Lok =Wk =ks =52 0<W <1
9 hy = Wik = ks = 5% 0<W <1
3. ks =Wk =k =15X 0<W <1

Figures 4.2(a), 4.2(b), and 4.2(c) illustrate the graphs corresponding to each of the
instances (1), (2), and (3) for the considered algorithms, respectively. The horizontal axis in
these images represents the weights k1, ko, and ks, whereas the vertical axis represents the
PI.
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Figure 4.2: Performance index (PI) for considered benchmark functions; (a) for case (1),
(b) for case (2) and (c) for case (3).

AFE and ME are equally weighted in instance (1). Figure 4.2(a) compares the
performance of the different algorithms by superimposing their PIs. FABC’s PI is found to
be greater than the algorithms under consideration. In cases 2 and 3, SR and ME are given
equal weights, while SR and AFE are given equal weights. Figures 4.2(b) and (c) show that
the algorithms work in the same way in both cases (1).

We also compare the convergence speed of the algorithms under consideration by
measuring the AFEs. A faster convergence speed is associated with lower AFEs. The
provided function evaluations for each test problem are averaged across 100 runs to reduce
the influence of the algorithms’ stochastic character. We use the acceleration rate (AR) to
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Table 4.6: Acceleration Rate (AR) of FABC as compared to the ABC, BSFABC, GABC,
and MABC, TP: Test Problems

TP ABC BSFABC GABC MABC

f1 1.238127303 1.850667005 1.475212807 1.101079914
fa2 1.113177806 1.553448443 1.392424095 1.10405956
fa 1 1 1 1.00002845
fa 1.047368685 1.573106004 1.28791748 1.151269341
fs 1.168420167 1.486014084 1.477148388 0.922719749
fe 2.288675786 2.016499788 2.364687632 1.324072768
f7 0.999977405 0.99995236 0.999977205 0.999858381
fs 1.468201015 1.59268305 1.159568718 1.155691229
fo 1.002129828 1.002218264 1.00212111 0.976128153
f1ic 1.075307629 1.453978671 1.328465956 1.233223954
f11 1.147425074 1.514352047 1.41209371 1.102759603
f1z 4.29436059 3.569740298 3.829677458 3.529718786
fz 2.957582324 2.267185606 1.836544162 2.940061017
f14 1.242665331 1.283253819 1.113571049 1.234101762
fis 1.074910394 2.179032258 1.240740741 1.035125448
f1e 1.279474616 0.95545547 0.577781913 0.827621877
f1z 1.246486244 2.335152512 1.330592105 1.060971142
fis 0.95236513 0.758064162 1.06331411 1.115641181
fie 8.656598289 6.283232535 2.246063345 2.951905989
f20 1.143791268 1.300395076 1.382803212 1.092531963

compare convergence speeds, which is defined as follows, based on the AFEs for the two
algorithms ALGO and FABC:

AFFEarco
AFEpagc’

ALGOe€ {ABC, BSFABC, GABC, and MABC}, with AR > 1 indicating FABC is the fastest.
The findings of Table 4.2are evaluated, and the value of AR is computed using equation (4.3)

AR = (4.3)

in order to study the suggested algorithm’s AR in comparison to the considered methods.
FABC and ABC, FABC and BSFABC, FABC and GABC, and FABC and MABC are all
compared in terms of AR in Table 4.6. It is clear from the Table 4.6 that convergence speed
of FABC is better than considered algorithms for most of the functions.

4.4 Conclusion

Gbest-guided Artificial Bee Colony (GABC) Algorithm has been proved to be a competitive
optimization problem solver in the field of swarm intelligence based algorithm. GABC
algorithm is developed to improve the convergence speed of the ABC algorithm and it has
been proved its efficiency with drawbacks like premature convergence and stagnation. To
reduce such possibilities in the GABC, a new solution search strategy, namely Fully Informed
Learning (FIL) is incorporated with onlooker bee phase of GABC. In FIL strategy, individual
updates its position through learning from the best solution in the swarm as well as gathering
information from all the other individuals of the swarm. The proposed algorithm has been
extensively compared with other recent variants of ABC namely, BSFABC, GABC, and
MABC. Through the extensive experiments, it can be stated that the proposed algorithm
is a competitive algorithm to solve the continuous optimization problems.

37



CHAPTER 5

FABC ALGORITHM FOR LARGE SCALE JOB SHOP
SCHEDULING
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Chapter 5

FABC Algorithm for Large
Scale Job Shop Scheduling

The large-scale job-shop scheduling problem (LSJSSP) is among one of the complex schedul-
ing problems. In past, although the swarm intelligence-based algorithms (SIA) have been
efficiently applied to solve the LSJSSP, finding the best solution for LSJSSP instances re-
mains a challenging task. Therefore, in this chapter, a novel SIA is applied to solve the 105
LSJSSP instances. The selected SIA is Fully Informed Artificial Bee Colony (FABC) algo-
rithm. The FABC algorithm is developed by taking inspiration from the GABC algorithm
position update process. In the FABC, the onlooker bee process of the Artificial Bee Colony
(ABC) algorithm is modified and designed such that the new position of the solution search
agent is obtained while learning from all the nearby agents. The results obtained by the
FABC is compared with the state-of-art algorithms. The results analysis shows that the
proposed approach to solving LSJSSP is competitive in the field of SIA.

This chapter provides detailed description of fully informed ABC. The proposed
FABC discussed in section 5.2 with its application for job shop scheduling problem in section
5.3. The experimental setup and result section 5.5 followed by conclusion in section 5.6.

5.1 Introduction

Efficient scheduling is crucial for making the best use of available resources. In the domain
of production management, the Large Scale Job-shop Scheduling Problem (LSJSSP) is a
complicated combinatorial optimization problem. JSSP needs n jobs to be accomplished on
m systems (machines). The system order for all jobs is fixed and varies depending on the
jobs. The jobs are put in place in a non-preemptive manner, which means that while one
job is running on one system, it cannot be disrupted by another. The primary goal of JSSP
is to find an appropriate sequence scheme that reduces the time it takes for all jobs to be
completed, which is referred to as makespan (M S). The goal is to minimize the makespan
(MS) [102, 103].

The LSJSSP is one of the most important NP-hard problem. To solve LSJSSP, sev-
eral deterministic conventional mathematical models and heuristic methods have been used.
To small size LSJSSP cases, mathematical models have a successful solution in a reasonable
amount of time. [104]. The computational time increases exponentially as the size of the
instances grows. So, for a larger scale LSJSSP, Non-conventional nature inspired algorithms
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(NTAs) are preferred alternatives [105). The numerous processes found in nature are used
to create NIAs. Swarm intelligence based algorithms (SIA) and evolutionary algorithms
(EAs) are the two main types of NIAs. The design of STA was influenced by the intellectual
actions of creatures. Some state-of-art SIA are Artificial bee colony (ABC)[4], spider mon-
key optimization (SMO) [12], teaching learning based optimization (TLBO) [11] etc,. EAs
like differential evolution (DE) [106], genetic algorithm (GA) [107] etc., are based on biotic
transformation like crossover, selection etc.

In recent years, NIAs are performing very well to solve physical world problems
[108, 5]. In this series, many NIAs emerged well to solve LSJSSP such as genetic algorithm
(GA) [109], particle swarm optimization (PSO) [110], hybrid biogeography based optimiza-
tion (BBO) algorithm [111], hybrid differential evolution algorithm [112], multiple type
individual enhancement PSO (MPSO) algorithm [113], classical LSISSP [114], differential
based harmony search algorithm with variable neighborhood search [115], biased random key
genetic algorithm [116], new neighboured structure based algorithm [105], teaching learn-
ing based optimization (TLBO) algorithm [117], improved ABC (IABC) algorithm [118],
discrete ABC (DABC) [14], best so far ABC [119], parallel ABC (pABC) algorithm [120],
beer froth ABC [5] etc. In terms of computational time and solution efficiency, the obtained
results are acceptable. At the same time, finding a solution for larger JSSP instances is
a challenging task. These findings motivate researchers to continue their work in order to
solve LSJSSP.

In light of the above, this chapter proposes a solution to the LSJSSP instances
by using an efficient ABC-based algorithm called Fully Informed Artificial Bee Colony
(FABC).The FABC algorithm was developed by K. Sharma et. al. [121]. The FABC
algorithm is designed by taking inspiration form the Gbest-guided ABC (GABC)[9]. In
2010, Zhu and Kwong proposed an improved ABC algorithm, GABC [9], that improved
exploitation by incorporating information from the global best (Gbest) solution into the so-
lution search equation. However, since every agent (solution) is inspired by the global best
approach, there is a good possibility of swarm stagnation. Therefore, the onlooker phase of
the GABC algorithm is modified to improve the exploration ability of the search agents. In
the modified onlooker bee phase “Fully Informed Learning” [122] strategy is incorporated.
In this chapter the FABC algorithm is applied to solve 105 LSJSSP instances. The results
are analysed and compared to other important methods available in the literature. The
obtained findings substantiate the validity of the proposed strategy.

5.2 Fully Informed ABC

The employed bee phase, onlooker bee phase, and scout bee phase are the three key phases
of the Fully Informed ABC (FABC) algorithm. In the following sections, we will go through
each phase in depth. The solution agents are initially initialised as follows:

5.2.1 Initialization of the solution agents

The solution agents are randomly initialized in the give search space. If the search range
of the given problem is [Bpinj, Bmaz;] then the total number of solution agents (T'SA) are

initialized as follows:

SAij = Bminj + T[Ov 1](Bmaacj - Bminj) (5.1)
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here SA; represents the i*" solution agent in the swarm, Brinj and Bpag; are
bounds of SA; in ¥ dimension whereas r[0, 1] represents the uniformly distributed random
number. The range of r is [0, 1].

The initialization phase is same in all the STAs. After this phase, the FABC executes
its three phase namely, employed bee, onlooker bee, and scout bee Cyclically.

5.2.2 Employed bee phase

In the employed bee phase of the FABC, every solution will get chance to update its position
using the following equation.

In equation 5.2, SAU;; is the updated position of solution SA;;. Best; is the Gth
element of the best solution found so far. Further, v;; is a number randomly generated
in the range [0, PC], where PC is a positive constant and SAy; is a neighbouring solution
agent. It is clear from equation 5.2 that the solution agents update their positions while
learning from the nearby agents as well as attracting towards the best solution agent in the
swarm. The term ;;(Best; —SA;;) helps the swam to converge at the best solution location
but this may lead to pre-mature convergence. Here the parameter PC helps in balancing
the exploration and convergence ability of the FABC algorithm. After getting the updated
position of the solution agent, a greedy selection mechanism (GSM) is applied between the
update position SMU;; and the old position SM;;. The best one is selected for the next
phase.

5.2.3 Omnlooker bees phase

During this process, employed bees exchange details about their food source with onlooker
bees in the comb, such as the quality, distance and direction of the food source. In terms
of FABC algorithm, this phase is used to update the solutions shared by the employed bee
phase on the basis of their quality. The quality of the solutions are measured using the
probability prob; which is a function of fitness of the solution agent. The prob; is calculated
using following equation:

+0.1, (5.3)

In equation 5.3, fit; shows the fitness of i*" solution agent whereas mazx fit represents
the maximum fitness in the swarm. On the basis of this prob;, the quality of the solution
agent is evaluated and based on that the solution agent is given chance to update its position.
Therefore, we can say that in this phase the better solutions will get more chance to update
the positions in compare to the less fit solutions. Further, in this phase, the fully informed
learning strategy is applied in the position update process of the solution agents. The

position update equation is shown below:

PO (S Ay — SAk)
TSA

SAU” = Tij + ’I“[O, 1] + ’lﬂij(BBStj - Sflij) (54)

here T'SA is the total number of solution agents while other parameters are same
as mentioned in equation 5.2. Here, it can be observed that a solution agent achieve a new
position while learning form all the solution agents of swarm as well as direction of the
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best solution of the swarm. As the learning from all the solutions is involve in this position
update process, the possibility of pre-mature convergence is reduced. the new position is
achieved. So, in the fully informed learning, to update its location in the search space, the
agent gathers knowledge from the best solution in the current swarm as well as all other
adjacent solutions. The new position of the solution agent is compared with the old one
using the GSM, and the best candidate solution will take part in the next generation of the
FABC;,

5.2.4 Scout bees phase

The scout bee phase is used to reduce the possibility of stagnation of the swarm. The
stagnation is the situation in which all the solution agents gathered at the same location of
the search space hence the inter-agent distance becomes negligible. As the position update
process depends on the inter-agent distance, the movement of the solution agents is reduced.
Hence the solution agents stagnated at the same location.

In this phase, the number of update of every solution agent is checked. If any
of the solution agent is not updating its position up to the pre-defined number (limit) of
iterations then that solution agent is considered as exhausted and a new solution is randomly
generated in the search space in place of that solution. Hence, the situation of stagnation can
be reduced while introducing the fluctuation in the swarm through random initialization.

5.3 Job shop scheduling problem organisation

The LSJSSP can be interpreted in following manner: There are a set of n jobs to be processed
using m machines. To complete the execution, each job has to be passed through all the m
systems in a given predefined sequence. Each job consists of total m operations. To perform
operations a job uses one of the machine. When any of the job is executing on any machine
it cannot be interrupted by other jobs. The total number of operations are m x n that are
scheduled on m systems [123].

The objective of the LSJSSP is to minimize the total completion time for all the
jobs i.e. makespan (M.S). Mathematically the problem is stated as :

Minimize MS,,q0 (5.5)

Where, MSmax = max(MSl,MSQ,MSg,,MS4, .MSn) MSl,]\ffSQ,MS&MS;l, ,MSn

are the completion time for all the n jobs. Followings are the constraints for LSJSSP [116]:
e Fach system can process at most one operation at a time.
¢ The completion time of any operation must be a positive integer.

e Precedence relationships among the different jobs must be satisfied.

5.4 FABC for LSJSSP

The FABC algoritm is used to solve LSJSSP instances, and the whole method is detailed here.
Since LSJSSP is a discrete optimization problem, a solution in the proposed algorithm is a
discrete valued vector (representing a potential operation scheduling list). The reordering of
jobs for FABC is used to estimate each solution in the search field. To generate the discrete
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valued sequence from a continuous valued vector we have used random key encoding (RKE)
scheme [124].

In RKE encoding scheme, first a continuous valued vector is sorted in an ascending
order using an integer series from 1 to n x m, where n represents the total number of jobs
and m shows the total number of available systems. As cach job has to go through m
systems for completing its execution so further transformation from this integer sequence is
performed using (Integer value mod n + 1). The integer series is transformed to operation
order sequence using this transformation, and each job index has m occurrences. Figure
5.1 depicts the transformation of a continuous valued vector into a discrete valued vector,
followed by an operation scheduling sequence. Our goal is to find an operation sequencing
list (a vector of discrete values) that decreases the makespan value. The goal is to figure out
a series of operations that reduces the overall time it takes to complete all of the jobs. The
detailed procedure is described in the subsequent steps:

Continuous 09| 0.6 0.8 0.2 0.5 0.3
valued solution
Decoded as 6 4 5 1 3 2
Operation 1 2 3 2 1 3
sequence

Figure 5.1: Random Key (RKE) Encoding Scheme

5.4.1 Initialization stage

The parameters of the proposed FABC algorithm namely, total number of solution agents,
number of employed and onlooker solution agents, and total number of iterations are ini-
tialized. Each solution agent is initialized in the search space using the equation 5.1. As
all the initialized sources are continuous in nature, RKE scheme is used to generate the
corresponding discrete valued operation sequence. Now the MS value (objective value) for

each operation sequence is calculated.

5.4.2 Employed honeybee stage

At this stage, using equation 5.2 all the continuous valued solution agents are modified. The
solution agents is modified as per the information of the neighbouring agents. The updated
solution agent is in continuing form, so again RKE encoding scheme is applied to alter this
continuous valued solutions in to corresponding discrete operation sequence list. The MS
value for this operation sequence is computed. If the corresponding MS value is better
then the previous value then the solution agent corresponding to this operation sequence is
selected for the next generation.

5.4.3 Onlooker honeybee stage

In onlooker honeybee stage, the probability for all the solution agents are assessed using
the equation 5.3. The solution agents are chosen and updated as per the equation 5.3 and
5.4 respectively. Again the solution agent is updated based upon the information obtained
from the neighbouring solution agents. To obtain the corresponding operation sequence,
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RKE scheme is applied on the produced continuous valued solution agent. The M.S value
is computed from the generated operation sequence. GSM is used to choose new solution
agent for the upcoming generation.

5.4.4 Scout honeybee stage

If a solution agent does not update it’s position up to the limit, then it is discarded and
re-initialized in the search space using the equation 5.1. The produced solution agent is
in continuous form, again RKE scheme is applied to obtain the corresponding operation
sequence. Calculate the M.S value from this operation sequence.

The pseudo-code of the designed approach for LSJSSP is shown in Algorithm 5.1.

Algorithm 5.1 FABC algorithm for LSJSSP

Parameter Initialization

Total solution agents = T'SA

D (Dimension) = m X n

Total generation count = MGN

CurrentIndex=1

Solution agents initialization in the search space using equation 5.1

Conversion of continuous valued solution agents into an operation sequence (discrete valued solutions) to deal LSJSSF
using RKE scheme

M S value Computation for every operalion sequence.

‘While (CurrentIndex < MGN) dc

e Step 1: Employed honeybee stage

— Revise the location of every solution agent as per the equation 5.2

— The newly generated solution agent is in continuous form only, so il is converted in to a discrete valued
operation sequence using RKE scheme.

— Compute the MS value from the generated operation sequence.

— Apply GSM to select the new solution agent on the basis of the MS value of its respective operation
sequence.

— The former solution agent will be substituted by the new solution agent if respective operation sequence
vector has a better MS value

e Step 2: Onlooker honeybee stage

— Probability prot; computation using equation 5.3 for each solution agent
— Revise the location of solution agent using the equation 5.4 selected as equation 5.3;

— Obtain the new discrete operation sequence from the recently revised continuing solution agents using RKE
scheme,

— MS value computation for recently produced operation sequence
— Apply GSM to select the new solution agent for the next generation.

— The former solution agent will be substituted by the new solution agent if corresponding discrete solution
sequence has a better MS value.

e Step 3: Scout honeybee stage

— If a solution agent does nol modify its position up to limit
— Randomly initialized that solution agent as per equation 5.1 in the search space
— Apply RKE scheme for producing discrete solution vector from this continuous valued solution agent.

— MS value computation for the operation scheduling list

e Step 4: Memorize the best solution found so far.

e CurrentIndex=CurrentIndex+1.
end while

Output the best solution

5.5 Implementation and experimental results

To prove the effectiveness of FABC algorithm, it is applied on LSJSSP instances. Following
105 LSJSSP instances are considered for experimentation [125, 126, 127].
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Table 5.1: Comparison in terms of best MS value for SMV instances

Instance Size LB UB FABC | BRKGA-JSP | TS/SA TS
SWVo01 20 x 10 1407 1407 1407 1407 1412 -
SWV02 20 x 10 1475 1475 1475 1475 1475 -
SWV03 20 x 10 1369 1398 1395 1398 1398 -
SWV04 20 x 10 1450 1474 1465 1470 1470 -
SWV05 20 x 10 1424 1424 1424 1425 1425 -
SWV06 20 x 15 1591 1678 1674 1675 1679 -
SWVo07 20 x 15 1446 1600 1572 1594 1603 -
SWV08 20 x 15 1640 1763 1762 1755 1756 -
SWV09 20 x 15 1604 1661 1650 1656 1661 -
SWV10 20 x 15 1631 1767 1736 1743 1754 -
SWV11 50 x 10 | 2983 | 2983 2983 2983 - 2983
SWV12 50 x 10 | 2972 | 2979 2975 2979 - 2979
SWV13 50 x 10 | 3104 | 3104 3104 3104 - 3104
SWV14 50 x 10 | 2968 | 2968 2968 2968 - 2968
SWV15 50 x 10 | 2885 | 2886 2885 2901 - 2886

e 15 SWV instances
e 50 TA instances
e 40 DMU instances

To attain the least M.S value for all these 105 LSJSSP instances is the main goal. The

experimental setting is listed as below:
1. Number of run =10
2. Number of maximum iteration =2000
3. Number of solution agents TSA =50
4. Dimension D = Number of systems x Number of jobs

5. limit = D x TSA
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Table 5.2: Comparison in terms of best MS value for TA instances

9v

Instance Size LB UB FABC BRKGA-JSP GES AlgFix | i-TSAB TS/SA DHS TLBO NKPR
TAO1 15 x 15 1231 1231 1231 1231 1231 1231 - 1231 1321 1526 1485
TA02 15 x 15 1244 1244 1244 1244 1244 1244 - 1244 1313 1538 1476
TAO03 15 x 15 1218 1218 1218 1218 1218 1218 - 1218 1327 1594 1470
TA04 15 x 15 1175 1175 1175 1175 1175 1175 - 1175 1285 1550 1519
TAO05 15 x 15 1224 1224 1224 1224 1224 1224 - 1224 1315 1551 1381
TA06 15 x 15 1238 1238 1238 1238 1238 1238 - 1238 1346 1538 1517
TAO07 15 x 15 1227 1227 1227 1228 1228 1228 - 1228 1322 1546 1460
TAO08 15 x 15 1217 1217 1217 1217 1217 1217 - 1217 1304 1534 1446
TA09 15 x 15 1274 1274 1274 1274 1274 1274 - 1274 1386 1614 1551
TA10 15 x 15 1241 1241 1241 1241 1241 1241 - 1241 1334 1542 1365
TA11l 20 x15 1323 1357 1355 1357 1357 1358 1361 1359 1520 1876 1687
TA12 20 x15 1351 1367 1367 1367 1367 1367 - 1371 1563 1856 1770
TA13 20 x15 1282 1342 1342 1344 1344 1342 - 1342 1513 1849 1713
TA14 20 x15 1345 1345 1345 1345 1345 1345 - 1345 1477 1780 1748
TA15 20 x15 1304 1339 1337 1339 1339 1339 - 1339 1557 1929 1788
TA16 20 x15 1302 1360 1360 1360 1360 1360 - 1360 1543 1852 1716
TA17 20 x15 1462 1462 1462 1462 1469 1473 1462 1464 1607 1941 1781
TA18 20 x15 1369 1396 1396 1396 1401 1396 - 1399 1601 1817 1776
TA19 20 x15 1297 1332 1331 1332 1332 1332 1335 1335 1524 1842 1722
TA20 20 x15 1318 1348 1348 1348 1348 1348 1351 1350 1554 1902 1710
TA21 20 x 20 1539 1643 1642 1642 1647 1643 1644 1644 1854 2399 2165
TA22 20 x 20 1511 1600 1600 1600 1602 1600 1600 1600 1852 2241 2126
TA23 20 x 20 1472 1557 1557 1557 1558 1557 1557 1560 1765 2210 2145
TA24 20 x 20 1602 1646 1646 1646 1653 1646 1647 1646 1829 2241 2173
TA25 20 x 20 1504 1595 1594 1595 1596 1595 1595 1597 1792 2324 2117
TA26 20 x 20 1539 1645 1641 1643 1647 1647 1645 1647 1863 2299 2206
TA27 20 x 20 1616 1680 1680 1680 1685 1686 1680 1680 1905 2436 2194
TA28 20 x 20 1591 1603 1600 1603 1614 1613 1614 1603 1819 2333 2100
TA29 20 x 20 1514 1625 1625 1625 1625 1625 - 1627 1853 2280 2146
TA30 20 x 20 1473 1584 1584 1584 1584 1584 1584 1584 1812 2247 2103
TA31 30 x15 1764 1764 1764 1764 1764 1766 - 1764 2037 2528 2382
TA32 30 x15 1774 1790 1781 1785 1793 1790 - 1795 2106 2591 2482
TA33 30 x15 1778 1791 1791 1791 1799 1791 1793 1796 2091 2685 2511
TA34 30 x15 1828 1829 1832 1829 1832 1832 1829 1831 2089 2508 2480
TA35 30 x15 2007 | 2007 2007 2007 2007 2007 - 2007 2139 2509 2512
TA36 30 x15 1819 1819 1819 1819 1819 1819 - 1819 2086 2705 2395
TA37 30 x15 1771 1771 1728 1771 1779 1784 1778 1778 2067 2512 2436
TA38 30 x15 1673 1673 1673 1673 1673 1673 - 1673 1980 2488 2250
TA39 30 x15 1795 1795 1795 1795 1795 1795 - 1795 2010 2439 2501
TA40 30 x15 1631 1673 1665 1669 1680 1979 1674 1676 1986 2455 2380
TA41 30 x 20 1859 2006 2006 2008 2008 2022 - 2018 - - -
TA42 30 x 20 1867 1945 1934 1937 1956 1953 1956 1953 - - -
TA43 30 x 20 1809 1814 1836 1852 1870 1869 1859 1858 - - -
TA44 30 x 20 1927 1983 1983 1983 1991 1992 1984 1983 - - -
TA45 30 x 20 1997 | 2000 2000 2000 2004 2000 2000 2000 - - -
TA46 30 x 20 1940 2008 2000 2004 2011 2011 2021 2010 - - -
TAA47 30 x 20 1789 1897 1892 1894 1903 1902 1903 1903 - - -
TA48 30 x 20 1912 1945 1940 1943 1962 1962 1953 1955 - - -
TA49 30 x 20 1915 1966 1962 1964 1969 1974 - 1967 - - -
TA50 30 x 20 1807 1925 1925 1925 1931 1927 1928 1931 - - -




Ly

Table 5.3: Comparison in terms of best MS value for DMU instances

Instance Size LB UB FABC BRKGA-JSP TS GES i-TSAB AlgFix
DMUO1 20 x15 2501 | 2563 2563 2563 2566 2566 2517 2563
DMU02 20 x15 2651 | 2706 2704 2706 2711 2706 2715 2706
DMUO03 20 x15 2731 | 2731 2731 2731 - 2731 - 2731
DMU04 20 x15 2601 | 2669 2669 2669 - 2669 - 2669
DMUO05 20 x15 2749 | 2749 2749 2749 - 2749 - 2749
DMU06 20 x 20 | 2834 | 3244 3242 3244 3254 3250 3265 3244
DMUO07 20 x 20 | 2677 | 3046 3045 3046 - 3053 - 3046
DMU08 20 x 20 | 2901 | 3188 3188 3188 3191 3197 3199 3188
DMU09 20 x 20 | 2739 | 3092 3091 3092 - 3092 3094 3096
DMU10 20 x 20 | 2716 | 2984 2082 2984 - 29084 2985 29084
DMU11 30 x 15 | 3395 | 3453 3454 3445 3455 3453 3470 3455
DMU12 30 x 15 | 3481 | 3516 3512 3513 3516 3518 3519 3522
DMU13 30 x 15 | 3681 | 3681 3681 3681 3681 3697 3698 3687
DMU14 30 x 15 | 3394 | 3394 3394 3394 - 3394 3394 3394
DMU15 30 x 15 | 3332 | 3343 3343 3343 - 3343 - 3343
DMU16 30 x 20 | 3726 | 3759 3748 3751 3759 3781 3787 3772
DMU17 30 x 20 | 3697 | 3836 3828 3830 3842 3848 3854 3836
DMU18 30 x 20 | 3844 | 3846 3844 3844 3846 3849 3854 3852
DMU19 30 x 20 | 3650 | 3775 3769 3770 3784 3807 3823 3775
DMU20 30 x 20 | 3604 | 3712 3712 3712 3716 3739 3740 3712
DMU21 40 x 15 | 4380 | 4380 4380 4380 - 4380 - 4380
DMU22 40 x 15 | 4325 | 4725 4725 4725 - 4725 - 4725
DMU23 40 x 15 | 4668 | 4668 4668 4668 - 4668 - 4668
DMU24 40 x 15 | 4648 | 4648 4648 4648 - 4648 - 4648
DMU25 40 x 15 | 4164 | 4164 4164 4164 - 4164 - 4164
DMU26 40 x 20 | 4647 | 4647 4647 4647 4647 4667 4679 4688
DMU27 40 x 20 | 4848 | 4848 4848 4848 - 4848 4848 4848
DMU28 40 x 20 | 4692 | 4692 4692 4692 - 4692 4692
DMU29 40 x 20 | 4691 | 4691 4691 4691 - 4691 4691 4691
DMU30 40 x 20 | 4732 | 4732 4732 4732 - 4732 4732 4749
DMU31 50 x 15 | 5640 | 5640 5640 5640 - 5640 - 5640
DMU32 50 x 15 | 5927 | 5927 5927 5927 - 5927 - 5927
DMU33 50 x 15 | 5728 | 5728 5728 5728 - 5728 - 5728
DMU34 50 x 15 | 5385 | 5385 5385 5385 - 5385 - 5385
DMU35 50 x 15 | 5635 | 5635 5635 5635 - 5635 - 5635
DMU36 50 x 20 | 5621 | 5621 5621 5621 - 5621 - 5621
DMU37 50 x 20 | 5851 | 5851 5851 5851 - 5851 5851 5851
DMU38 50 x 20 | 5713 | 5713 5713 5713 - 5713 - 5713
DMU39 50 x 20 | 5747 | 5747 5747 5747 - 5747 - 5747
DMU40 50 x 20 | 5577 | 5577 5577 5577 - 5577 - 5577




The parametric ambience for the FABC approach and the other considered ap-
proaches are kept same in terms of swarm size and maximum number of iterations to carry
out an equitable comparison.

The reported results of FABC are compared with the following state-of-art algo-
rithms available in the literature:

¢ Biased random key genetic algorithm (BRKGA-JSP) [116]
e A guided tabu search for LSISSP (NKPR) [128]

e Teaching learning based optimization method (TLBO) [129]
¢ Differential based harmony search (DHS) algorithm [115]

¢ A tabu search to solve LSJSSP (TS) [130]

¢ An advanced tabu search algorithm for LSJSSP (i-TSAB) [131]

AlgFix [132]
¢ A tabu search/simulated annealing algorithm for LSJSSP (TS/SA) [133]
e Global equilibrium search technique (GES) [134]

The obtained results for the above three instances are represented in Tables 5.1 to
5.3. These tables list the name of the instance, its size, the lower bound (LB), the upper
bound (UB) for the best known solution (BKS), the BKS obtained by FABC approach,
and BKS value obtained from the compared algorithms. The obtained results for all the
instances demonstrate that the proposed FABC is superior approach in reference to MS
value during assessment with other considered approaches.

Further to analyse the outcomes, average relative percentage error (RPE) is also
calculated and compared as tabulated in Table 5.4. The value of RPE is computed (with
respect to the UB value of an instance) as per demonstrated in equation 5.6.

RPE =100 x (BK Sa90 — UB)/UB (5.6)

Here, BK Sq4, represents the A S value obtained using the considered approaches.
The attained outcomes of Table 5.4 demonstrate the significant improvement in the average
RPE which assures the authenticity of the introduced approach.

5.6 Conclusion

This article proposed a solution to solve 105 large scale instances of job shop scheduling
problem (LSJSSP) using an efficient fully informed artificial bee colony (FABC). In FABC
algorithm, to improve the exploration ability during the solution secarch process, a fully
informed learning strategy is incorporated in the onlooker bee phase of the Gbest ABC
algorithm. The MS time is used as an evaluation criterion in the LSJSSP. The results are
analysed and compared to cutting-edge techniques proposed by a number of researchers.
According to the results of the experiments, the proposed solution gives better solution. In
Future, some more performance metrics may be considered for experimentation.
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Table 5.4: Comparison based upon Average RPE

Approach Instances ARPE FABC(%) | Improvement
Solved (%) (%)
TA instances
BRKGA-JSP [116] 50 0.015 -0.093 0.108
GES [134] 50 0.218 -0.093 0.311
AlgFix [132] 50 0.556 -0.093 0.649
i-TSAB [131] 25 0.269 -0.15 0.419
TS/SA [133] 50 0.156 0.093 0.249
DHS [115] 40 12.412 -0.104 12.516
TLBO [129] 40 36.883 -0.104 36.987
NKPR [128] 40 28.951 -0.104 29.055
DMU Instances
BRKGA-JSP [116] 40 -0.021 -0.027 0.006
TS [130] 13 0.097 -0.072 0.169
GES [134] 40 0.107 -0.027 0.134
i-TSAB [131] 20 0.24 -0.06 0.3
AlgFix [132] 40 0.056 -0.027 0.083
SWU Instances
BRKGA-JSP [116] 15 -0.156 -0.364 0.52
TS/SA [133] 10 -0.073 -0.529 0.602
TS [130] 5 0 -0.0338 0.0338
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Chapter 6

Fitness based Particle Swarm

Optimization

Particle Swarm Optimization Algorithm (PSOA) is a popular population-based approach
for addressing nonlinear and difficult optimization problems. It’s a simple to create swarm-
based probabilistic algorithm, but it has drawbacks including casy local optima and sluggish
convergence in the latter stages. PSO includes a unique position update phase, dubbed
fitness based position updating in PSO, to reduce the risk of stagnation while increasing
convergence speed. The recommended phase is based on the spectator bee phase of the Ar-
tificial Bee Colony (ABC) algorithm. In the proposed position update phase, solutions alter
their positions depending on probability, which is a function of fitness. This method allows
better solutions in the solution search process to update their places more often. The recom-
mended approach is called Fitness Based Particle Swarm Optimization (FitPSO). FitPSO’s
efficiency is demonstrated by comparing it to the traditional PSO 2011 and ABC meth-
ods on 15 well-known benchmark problems and three real-world engineering optimization
difficulties.

This chapter goes into the fitness-based PSO in detail (FitPSO). In section 6.2,
standard PSO is discussed. Fitness based Particle Swarm Optimization (FitPSO) is proposed
in section 6.3. The proposed strategy’s performance is examined in Section 6.4. The section
6.5 explains how FitPSO may be used to solve engineering optimization issues. Finally, the
chapter is finished in section 6.6.

6.1 Introduction

After being inspired by the social behaviour of fish schooling and birds flocking while seeking
for food, Kennedy and Eberhart [88], [135] developed a swarm intelligence based optimization
technique called Particle swarm optimization (PSO) in 1995. PSO is an easy-to-understand
and use population-based meta heuristic optimization approach. PSO is a preferable alter-
native for multi-model, non-convex, non-linear, and complicated optimization problems, but
it, like any other evolutionary method, has limitations including entrapment in local optima
([136]) and computational inefficiency ([137]). PSO’s applicability is limited by these factors
[138]. Researchers are always attempting to achieve these goals while investigating the use
of PSO, such as enhancing convergence speed and ignoring local optima. As a result, many
PSOA modifications have been proposed to solve these flaws [139], [136], [140], [141], [142],
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and [137]. However, achieving both objectives at the same time is difficult. Liang et al., for
example, proposed the comprehensive-learning PSO (CLPSO) [136], which tries to ignore
local optima but has sluggish convergence. Ratnaweera et al. [139]proposed time-varying
acceleration parameters to balance cognitive and social components in the early and late
stages of development. Zhan et al. [140]also attempted to use acceleration parameters that
increased or reduced depending on the phase of searching or using search space. Zhang et
al. [141]looked examined the impact of these variables on position expectation and variance,
and found that setting the cognitive acceleration factor to 1.85 and the social acceleration
factor to 2 improves system stability. Gai-yun et al. [142]also researched on cognitive and
social component self-adaptation. To balance the exploration and exploitation capabilities,
a fitness-based position update approach is presented in this chapter of PSO. In addition,
the PSO velocity update equation has been tweaked to increase convergence.

6.2 Standard PSOA Strategy

PSO is an optimization approach that mimics the behaviour of flocking birds. PSO is a
living, breathing community of active, interacting individuals with relatively little innate
intelligence. In PSO, the whole group is referred to as a swarm, while cach individual is
referred to as a particle, which represents a potential candidate’s answer. By watching the
behaviour of neighbouring birds who looked to be near the food source, the swarm seeks
food for itself through social learning. Initially, each particle is randomly started inside the
search area and remembers information about its personal best position, pbest, swarm best
position, gbest, and current velocity, V, with which it is travelling. Each particle adjusts its
location based on these three variables. As a result, the entire swarm advances in a better
direction while using a collaborative trial and error technique, eventually settling on a single
best known answer.

The " particle of the swarm is represented by a D-dimensional vector, X; =
(241, %2, ..., xip), in a D-dimensional search space. Another D-dimensional vector V; =
(vi1, vi2, ..., v;p) Tepresents the velocity of this particle. P; = (p1, pi2, --.., Dip) denotes the
previously best visited position of the i** particle. The best particle in the swarm’s index
is g. For movement, the PSO swarm employs two equations: the wvelocityupdate equation
and the positionupdate equation. The velocity of the ith particle is updated using equation
(6.1) as the velocity update equation. Equation (6.2) is used to update the position..

Vij = Vi + Cl’f'l(pij — JJU) + CQTQ(pgj — :L‘LJ) (6.1)

Tij = T + Uiy (6.2)

The dimension is represented by j = 1,2, ..., D, while the particle index is represented by
i =1,2,..,5. S is the swarm’s size, and ¢; and cy are constants (typically ¢1 = c2),
often known as cognitive and social scaling parameters or simply acceleration coefficients,
respectively. 1 and ro are uniformly distributed random numbers in the range [0, 1].

The right hand side of the velocity update equation (6.1) has three terms. The first
term v;j represents the memory of the prior direction of movement, which may be regarded
of as a momentum term that prevents the particle from changing direction dramatically.
The second phrase, ¢171(pi; — xi;), refers to the cognitive component or persistence, which
pulls particles back to their prior optimal state and allows swarms to search locally. The
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last term, cora(pg; — @45), is known as the social component and is responsible for global
search. It allows individuals to compare themselves to others in their group. The following
is a description of the Pseudo-code for Particle Swarm Optimization:

Algorithm 6.1 PSOA Pseudo-code:

Parameters w, ¢1, and co are initialized;
Initial particle locations and respective velocities are initialized;
Calculate the objective value of the initial particles;
Save gbest and pbest positions;
while termination criteria do
for each particle, X; do
for cach j. z;; do
(i) Calculate the velocity v;; using (6.1);
(ii) Calculate the new location z;; using (6.2);
end for
end for
Calculate the objective value of the updated solution;
Through greedy selection get the new value of gbest and pbest;
end while
Get the particle having best objective value;

Initially, two variants of PSOA were published in the literature based on neighbour-
hood size: the global version of PSO (PSO-G), which is the original PSO, and the local
version of PSO (PSO-L), [39]. The term p, in the social component of the velocity update
equation (6.1) is the only difference between PSO-G and PSO-L. It refers to the best particle
of the whole swarm in PSO-G, and the best particle of the individual’s vicinity in PSO-L.
The PSO-social G’s network is based on the star topology, which allows for faster conver-
gence but is more prone to converge prematurely. PSO-L, on the other hand, employs a ring
social network architecture, with smaller regions specified for each particle. It is clear that
because PSO-L has less particle interconnectivity, it is less prone to being caught in local
minima, albeit at the cost of delayed convergence. PSO-G is better for unimodal situations
whereas PSO-L is better for multimodal ones.

The velocity update equation determines the balance between PSO’s exploration and
exploitation capabilities. Because there are no velocity constraints in Basic PSO, particles
far from gbest will take massive steps in early iterations and are very likely to exit the search
space. The velocity clamping notion was presented to balance particle update step size by
regulating velocity. Velocity clamping is used to keep velocity within its bounds when it
surpasses them. To prevent velocity clamping and strike a balance between exploration and
exploitation, a new parameter called inertia weight [40]was added to the velocity update
equation, as follows:

Vij = W * V5 + c1r1(pij — xij) + cara(Pg; — Tij) (6.3)

where w stands for inertia weight. The proposed PSOA is detailed in the next
section.

6.3 Fitness Based PSOA

However, while the conventional PSO may provide a decent solution at a much faster rate,
it struggles to refine the optimal solution when compared to other optimization approaches,
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owing to less variety in later search [?]. On the other hand, in PSO, problem-based parameter
tuning is also crucial in order to obtain the best solution correctly and efficiently [143].There
are three terms in the typical PSO velocity update equation (6.1). The first phrase refers
to the capacity to search globally, while the second and third terms refer to the ability to
share knowledge socially and cognitively. More cognitive capability forces particles to move
quickly toward their personal best position, whereas more social knowledge forces particles
to move quickly toward their global best position. The acceleration factors ¢l and co direct
the movement of the swarm towards the optimal solution, as shown in (6.1). As a result,
the acceleration coefficients ¢; and ¢o need be fine-tuned to get the desired result.

More value of the cognitive component compared to the social component results in
excessive wandering of individuals through the search space, while more value of the social
component may result in particles converge prematurely toward a local optimum, according
to Kennedy and Eberhart ([88]). These two components are crucial for PSO’s exploration
and exploitation capabilities to be balanced. As a result, two changes are recommended in

this chapter to improve PSO’s solution search efficiency.

1. The modified Velocity update equation (refer eq. 6.3) is as follows:
Vij =W X Ui + ¢ X 1(pgj — Tij) (6.4)

The Pbestcomponent (cognitive component) is eliminated from the velocity update
equation of PSO (¢17r1(pi; — x45), as shown in equation (6.4). The magnitude of each
individual’s velocity will now be determined by their distance from the current global
best solution. As a result, this technique will enhance PSO’s exploitation capabilities.

2. PSO now includes a new position updating mechanism inspired by the Artificial Bee
Colony (ABC) algorithm’s spectator bee phase [144]. All employed bees hunt for food
sources and compute their fitness using equation (6.5) during the employed bee phase
of ABC:

1/1+ fi), iffi>0
fitness; = [+ f). Ji (6.5)
1+ abs(f;), if f; <O.
The observer bees then assess the given information and choose a solution with a
probability, prob;, that is connected to its fitness. Equation (6.6) may be used to
determine the probability prob;:
0.9 x fitness;(G)

prob;(G) = maz fit(C) +0.1, (6.6)

where G represents the iteration counter, fitness;(G) represents the fitness value of
the 5" solution, and maxfit(G) represents the maximum fitness of the solutions in
the G*" iteration. The ABC position update equation (6.7) is as follows:

Yij = Tij + b (@5 — ;) (6.7)

where k € {1,2,..,5} and j € {1,2,..,D} are randomly chosen indices, k must be
distinct from 4, phi;; is a random integer between [-1, 1], and z; is a random solutionin
the current population In the basic ABC, only one dimension is updated at a time in
the employed or onlooker bee phase. This update occurs during the onlooker bee phase
and is based on a likelihood that is a function of fitness.
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The suggested position update approach is combined with PSO, resulting in a novel
algorithm known as Fitness-based PSO (FitPSO). Algorithm 6.2is used after basic
PSO operators in FitPSO. FitPSO is now more capable of exploitation in improved
search areas because to the addition of Algorithm 6.2. It’s reasonable to assume this
since, after applying fundamental PSO operators in FitPSO, better candidate solutions
are given more opportunities to update themselves than poorer candidates. Algorithm
6.2shows the pseudo-code for the suggested position update method that works after
PSO operators.

Algorithm 6.2 Position update based on Fitness of the solution:

for every solution, z; do
if prob; > random(0,1) then
Yij = Tij + ij(Tij — Tj),
evaluate the fitness of y;,
Select the best one between y; and 7,
end if
end for

Algorithm 6.3shows the pseudo-code for the proposed FitPSO algorithm.

Algorithm 6.3 FitPSO Algorithm(FitPSOA):

The algorithm variables w, and ¢ and S are initialized;
The solutions and their respective velocities are initialized.
Calculate the objective value (fitness) of every individual.
Identify the global best solution (gbest).
while termination condition do
for each solution, X; do
for cach dimension j of x;; do
(i) Calculate the new velocity v;; using (6.4);
(ii) Calculate the new Location z;; using (6.2);
end for
end for
Calculate the objective value (fitness) of the new solutions.
Through greedy select get the best solution in the swarm as gbest.
t=1,i=1
while ¢ < S do
if prob; > rand(0, 1) then
JFHEFEEE proby; (refer 6.6)*FF*/
Yij = Tij + G (Ti5 — Tkj),
{k, j is the solution selected randomly}
Evaluate the velocity ;;
Get the best soluton between y; and zj.;
t=1t+1
end if
1=1+1
if i > S then
1=1
end if
end while
end while
Return the best solution from the swarm.
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Table 6.1: Test problems; AE: Acceptable Error

Objective function Search Optimum Value D AE
Range
Ji(2) = 2, (00(z0y — 2,27 + (2; — 1F) [-30, 30 f=o0 30 | 1.0E — 02
Jo(2) = 10C + Y2 | [a? - 10cos(27z,)] [-5.12, 5.12 f@ =0 30 | 1.0E — 05
a2
Ja(a) = — L sin 2y (sin (F32-)20) Ic, = Fonin = —9.66015 10 | 1.0E — 05
iz 2 i 4 ~
= 22+, BT+, Y [5.12, 5.12 7(0) = 30 | 1.0E— 02
J5(2) = B, iz? + random(o 1) [-1.28, 1.28 1(0) = 30 | 1.0E — 05
(2402, 4C Saiaieq B
Je(a) = - P! (exp( (a’“’“: 1’1’“‘) x]) [5, 5 F@ =-C+1 10 | 1.0E — 05
where, I = cos (4\/172 + 1f+1 +C 5111,+1)
2 - D(D+4)(LC—1)
Jr() =SB (6 - )% - SR, aimiss |-p?, D fmin = —ARLEEDEDL 10 | 1.0E-o01
jg(a):100[1’27152+(1—11:2+90(1,1—m§)2+(]—z3)2+ [-10, 10 f=o0 4 1.0E — 05
10.1[(zz — 1% 4+ (24 — 1)%] +19.8(a2 — 1)(xzq — 1)
fo(a) = 1 ja; — %}f;‘*ib’:”]z [-5, 5 £(0 192833 0190836 €.123117 | 4 | 1.0E — 05
i Tt 0 135766) = 3.075E — 04
Jic) = T 00022 — 2041)% + (2 = LF) + foiqer 2 = | [-100, 100 J(0) = fbias =390 10 | 1.0E-o01
a—c+1l,z=|ry,22,....ap] ¢=[c1,062,...01
Ji1(@) = L+ (21 +as+1)% (19— 1zy+3af —14as 46z 2o + [-2, 2 f(0,-1)=3 2 1.0E — 14
322))- (30+ (221 —3ag)% (18 — 3241 + 1227 44842 — 3€x 122 +
27a3),
5 2
J1z (@) = —coszq cosagel(— @1 -7 —(az-m)%)) [-10, 10 flm,m) = —1 2 1.0E — 12
e 1,
J1z(z) = 2;21(% —yi)? [-10, 10 £(313,15.16.C.78)= 0 4E — 04 3 1.0E — 03
Jia(x) = — Sf_jicos((i+ ay +1, % dcos((t+ 1L az +1) | [10, 10 f(7 083t 4,8580) = —186 730¢ 2 1.0E — 05
Jis(@) = —|A TR sin(zy — 2) + [122 sin(B(z; — 2))]. A = | [0, 180 F(90Fz) = —(A+1 10 | 1.0E — 02

xT) =
S E,B =52z =3(

6.4 Experiments and Results

This section evaluates the suggested algorithm’s performance in terms of accuracy, efficiency,

and dependability.

6.4.1 Benchmark functions for testing

15 mathematical optimization problems (f1 to fi5) of various features and difficulties are
considered to validate the efficacy of FitPSO (listed in Table 6.1). All of these issues occur

on a regular basis in nature.

6.4.2 Experimental setting

The success rate, average number of function evaluations, and mean error derived from the
proposed FitPSO are all recorded. For the sake of comparison, the results for these test issues
(Table 6.1) are likewise acquired from ABC and PSO. When implementing the proposed and
other considered algorithms to solve the issues, the following parameter settings are used:

Parameter setting for PSO (Standard PSO 2011) and FitPSO:

e Swarm size S =50 ,

e Inertia weight w = 0.8,

e Acceleration coefficients ¢ = ¢; = c2 = 0.5 + log2 (for PSO)[145],

¢ The number of run =100.

¢ The terminating criteria: Either acceptable error (Table 6.1) meets or maximum num-

ber of function evaluations (which is set to be 200000) is reached,

Parameter setting for ABC:
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Table 6.2: Comparison based on average number of function evaluations, TP: Test

Problem.
TP ABC PSO FitPSO
IR 196024 199407 193681
fa 49984 200050 102911
fs 20192 198326 69919
fa 200000 196434 125547
fs 200000 200000 200000
fe 89944 195748 67107
fr 200000 67527 44941
fs 200000 52689 21049
fo 172839 35314 15399
f1o 174699 187126 67504
F11 112961 102884 87733
f12 187003 9818 10599
f1a 28346 3397 2026
f1a 4861 80823 9836
f1s 55076 177156 104254

Table 6.3: Comparison based on success rate out of 100 runs, TP: Test Problem.

TP ABC PSO FitPSO
I 5 i 23
f2 100 0 100
[ 100 3 100
f,1 0 31 100
s 0 0 0
o o7 6 100
Fr 0 100 100
s 0 100 100
fo 21 100 100
f1o 23 58 98
Fi | 60 51 59
Fo | 13 100 100
fi3 100 100 100
f1a 100 73 100
Fis | 99 27 99

Colony size S = 50 [95, 96],

o ¢;; =rand—1,1],

Number of food sources SN = 5/2,

e The number of run =100,

The terminating criteria: Either acceptable error (Table 6.1) meets or maximum num-
ber of function evaluations (which is set to be 200000) is reached,

6.4.3 Results Analysis of Experiments

Tables 6.2, 6.3 and 6.4 present the numerical results for the benchmark problems of Table
6.1 with the experimental settings shown in section 6.4.2. These tables show the results
of the proposed and other considered algorithms in terms of average number of function
evaluations (AFE), success rate (SR) and mean error (ME).

After analyzing the results, it can be said that FitPSO outperforms the considered
algorithms most of the time in terms of accuracy (due to ME), reliability (due to SR) and
efficiency (due to AFE). Some other statistical tests like the Mann-Whitney U rank sum
test, acceleration rate (AR) [97] and boxplots have also been done in order to analyze the
algorithms output more intensively.
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Table 6.4: Comparison based on mean error, TP: Test Problem.

TP ABC PSO FitPSO
f1 1.34E4-00 4.44E+01 6.80E+00
fa2 5.66E-06 3.87E+01 7.65E-06
f3 3.84E-06 3.12E-01 5.04E-06
fa 9.75E+401 2.20E-02 9.72E-03
fs 1.18E401 9.94E+00 8.95E+00
fe 1.05E-02 1.48E4-00 8.64E-06
fz 8.89E-01 9.53E-06 8.98E-06
fs 1.52E-01 8.17E-04 7.65E-04
fe 1.69E-04 8.96E-05 8.21E-05
f1ic 6.26E-01 1.69E4-00 1.66E-01
f11 1.19E-06 4.96E-14 4.22E-14
faz 2.44E-05 5.34E-14 5.10E-14
fis= 1.95E-03 1.95E-03 1.88E-03
f14 4.58E-06 9.54E-05 5.42E-06
fas 7.89E-03 3.74E-01 7.81E-03

6.4.4 Statistical Analysis

Algorithms ABC, PSO and FitPSO are compared based on SR, AFE, and ME. From the re-

sults shown in Table 6.2, it is clear that FitPSO costs less on 9 test functions (f1, f1. fs, f7. fs, fo. f10. f11, f13)
among all the considered algorithms. As these functions include unimodel, multimodel, sep-

arable, non separable, lower and higher dimension functions, it can be stated that FitPSO

balances the exploration and exploitation capabilities efficiently for all kind of functions

compared to the other considered algorithms. ABC outperforms FitPSO over test functions

f2, f3, f14, f15, while PSO is outperforms over FitPSO on test functions fis.

Figure 6.1: Boxplots graph for average number of function evaluation

Since boxplots [99] can efficiently represent the empirical distribution of results, the
boxplots for average number of function evaluations for PSO, ABC and FitPSO have been
represented in Figure 6.1. Figure 6.1 shows that FitPSO is cost effective in terms of function
evaluations as interquartile range and median of average number of function evaluations are
very low for FitPSO.

Though, it is clear from box plots that FitPSO is cost effective than ABC and PSO
i.e., FitPSO’s result differs from the other, now to check, whether there exists any significant
difference between algorithm’s output or this difference is due to some randomness, we
require another statistical test. It can be observed from boxplots of Figure 6.1 that average
number of function evaluations used by the considered algorithms to solve the different
problems are not normally distributed, so a non-parametric statistical test is required to
compare the performance of the algorithms. The Mann-Whitney U rank sum [146], a non-
parametric test, is well established test for comparison among non-Gaussian data. In this
chapter, this test is performed at 5% level of significance (o = 0.05) between FitPSO - ABC
and FitPSO - PSO.
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Table 6.5: Comparison based on mean function evaluations and the Mann-Whitney U rank
sum test at a a = 0.05 significance level (‘+  indicates FitPSO is significantly better, -’
indicates FitPSO is worse and ‘=’ indicates that there is no significant difference), TP:

Test Problem.

TP Mann-Whitney U TP Mann-Whitney U
rank sum test with rank sum test with
FitPSO FitPSO
ABC PSO ABC PSO

f1 + + fe + +

f2 - + fic + +

f3 - + f1 + +

fa + + fiz + -

fs = = fiz + +

fo + + f1a - +

fr + + fie - +

fs + +

Table 6.6: Acceleration Rate (AR) of FitPSO as compared to ABC and PSO, TP: Test

Problems
TP ABC PSO
f1 1.01209718 1.029561419
fa 0.485698877 1.943903257
fa 0.417512568 2.836490536
fa 1.593022561 1.564618969
fs 1.00019985 1.00025
fo 1.340312037 2.916931789
fr 4.450313185 1.502564445
fs 9.502562531 2.50312359
fo 11.22408988 2.293208266
fic 2.587992119 2.772072766
f11 1.287559869 1.172694425
f1z 17.64270956 0.926317279
f1s 0.68765802 1.160970608
f1a 0.494260878 8.217110614
fie 0.528288507 1.69927293

Table 6.5 shows the results of the Mann-Whitney U rank sum test for the average
number of function evaluations of 100 simulations. First we observe the significant difference
by Mann-Whitney U rank sum test i.e., whether the two data sets are significantly different
or not. If significant difference is not seen (i.e., the null hypothesis is accepted) then sign
‘=" appears and when significant difference is observed i.e., the null hypothesis is rejected
then compare the average number of function evaluations. And we use signs ‘+’ and ‘-’ for
the case where FitPSO takes less or more average number of function evaluations than the
other algorithms, respectively. Therefore in Table 6.5, ‘+’ shows that FitPSO is significantly
better and ‘-’ shows that FitPSO is significantly worse. As Table 6.5 includes 23 ‘+’ signs out
of 30 comparisons. Therefore, it can be concluded that the results of FitPSO is significantly
cost effective than ABC and PSO over considered test problems.

Further, we compare the convergence speed of the considered algorithms by mea-
suring the AFEs. A smaller AFEs means higher convergence speed. In order to minimize
the effect of the stochastic nature of the algorithms, the reported function evaluations for
each test problem is averaged over 100 runs. In order to compare convergence speeds, we
use the acceleration rate (AR) which is defined as follows, based on the AFEs for the two
algorithms ALGO and FitPSO:

_ AFFarco
AFEpypso’

where, ALGOe {ABC, PSO} and AR > 1 means FitPSO is faster. In order to investigate

AR (6.8)
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Figure 6.2: Acceleration Rate of FitPSO as compared to ABC and PSO

the AR of the proposed algorithm as compare to the considered algorithms, results of Table
6.2 are analyzed and the value of AR is calculated using equation (6.8). Table 6.6 shows a
comparison between FitPSO and ABC, FitPSO and PSO in terms of AR. Tt is clear from the
Table 6.6 that convergence speed of FitPSO is better than considered algorithms for most
of the functions. The same claim can also be justified by visualizing the Figure 6.2. The
convergence speed of FitPSO can also be judged through convergence figures 6.3(a)-6.3(d)
that show the fitness movement through the iterations in a single run for selective functions
f6, fo, f10 and f11 3 respectively.

- FPSQ)

Funtion Valia

Function Value

Iteartions Iterations

(a) function fe (b) function f¢

. FPSQ

Function Value

lterations Iterations

(c) function f1g0 (d) function fi1

Figure 6.3: Convergence graph for ABC, PSO and FitPSO on test problems fs, fo, fi0, fi1-

6.5 Applications of FitPSO to Engineering Optimiza-
tion Problems

Further, the proposed FitPSO algorithm is applied to solve three real world engineering

optimization problems, namely Compression Spring [147, 148], Lennard-Jones [149], and

Welded beam design optimization [150, 151]. Each of the engineering optimization problem
is described as follows:
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6.5.1 Compression Spring:

This problem minimizes the weight of a compression spring, subject to constraints of mini-
mum deflection, shear stress, surge frequency, and limits on outside diameter and on design
variables. There are three design variables: the wire diameter x;, the mean coil diameter x5,
and the number of active coils x3. This is a simplified version of a more difficult problem.
The mathematical formulation of this problem is:

z1 € {1,...,70} granularity 1

5 € [0.6;3]

x3 € [0.207;0.5] granularity 0.001
and four constraints

8CtFmaat:
g1 = fnmg -5 <0

g2 ‘= lf _lmaz <0

93 ‘= 0p — Opm <0
Fmam'—Fp S 0

g4 = Oy — K
with
Cy=1+ 0.75“75_3“ + 0.615%2
Fraz = 1000
S = 189000
ly = fmas 1 1.05(21 + 2)a3
lmaz = 14
p— FP
Op =K
Opm =6
I, =300
_ 6_T4
K=115x10 Swlﬁzg
0w = 1.25

and the function to be minimized is

o Tox3(z1 +2)

E(X)=m .

The best known solution is (7, 1.386599591, 0.292) , which gives the fitness value f* = 2.6254.
Acceptable error for this problem is 1.0F — 04.

6.5.2 Lennard-Jones :

The function to minimize is a kind of potential energy of a set of N atoms. The position
X, of the atom ¢ has three coordinates, and therefore the dimension of the search space is
3N. In practice, the coordinates of a point X are the concatenation of the ones of the Xj;.
In short, we can write X = (X1, Xo, ..., Xn), and we have then

N-1 N ) .
Ey(X) = ( - )
; S X - X% 1% = X50°

In this study N = 5,a = 6, and the search space is [-2, 2] [149].
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6.5.3 Welded beam design optimization problem:

The problem is to design a welded beam for minimum cost, subject to some constraints
[150, 151]. The objective is to find the minimum fabricating cost of the welded beam
subject to constraints on shear stress 7, bending stress o, buckling load P., end deflection §,
and side constraint. There are four design variables: x1, xo, x3 and z4. The mathematical
formulation of the objective function is described as follows:

E3(Z) = 1.10471x} 9 + 0.048112324(14.0 + 2)

subject to:

gl(f) = T(f) — Tmaz < 0

92(f) = U(f) — Omaz <0

g3(X) = z1—24<0

94(',1_’:) = 5(5) - 5maw <0

g5(%) = P—P.(¥)<0

0.125 <z <5, 01<z9,23<10and 0.1 < x4 <5

where

~ L2
7(Z) = \/7-’2 - T’T”E + 712,

P MR To
7= ' =— M=P(L+=2),
V2z132 J ( 2 )

2
o2 T, + T3
R=4/=2
V(=)
L22+ T+ 23\
4 2 ’
6PL 6PL3

o(T) = ——,0(F) =

T4232

L 4.013E.’173$43 I3 E
P(F) = oot (g I8 [ 2
(@) 612 2rV 1c

P =60001b, L =14 in., Smaez = 0.25 in., omaey = 30,000 psi,

EJE’4Z’32 ’

Tmaz = 13600 psi, E =30 x 10° psi, G =12 x 10° psi.

The best known solution is (0.205730, 3.470489, 9.036624, 0.205729) , which gives the function
value 1.724852. Acceptable error for this problem is 1.0E — 01.

6.5.4 Experimental Results

To solve the constraint optimization problems (E; and FE3), a penalty function approach is
used in the experiments. In this approach the search is modified by converting the original
problem into an unconstrained optimization problem by adding a penalty term in case of

constraints violation as shown below:

flz) = flx) + B
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where, f(x) is the original function value and 3 is the penalty term which is set to 103.
Table 6.7 shows the experimental results of the considered algorithms on the engi-

neering optimization problems. It is clear from Table 6.7 that the inclusion of new position

update strategy in the PSO 2011, it performs better than the considered algorithms.

Table 6.7: Comparison of the results of test problems; TP: Test Problems

TP Algorithm SD ME AFE SR
E, ABC 1.17E-02 | 1.36E-02 | 187602.32 | 10
PSO 2.99E-04 | 4.86E-04 | 23789.5 100
FitPSO 9.09E-04 | 5.30E-04 | 18159 100
Es ABC 1.16E-04 | 8.68E-04 | 71931.02 100
PSO 3.38E-01 | 1.95E-01 | 139263.5 53
FitPSO 1.48E-04 | 8.41E-04 | 62669.5 100
E: ABC 7.65E-02 | 2.40E-01 | 196524 3
PSO 4.29E-03 | 9.43E-02 | 4012.5 100
FitPSO 5.61E-03 | 9.36E-02 | 4826 100

Further, the algorithms are compared through SR, M E and AFE. On the basis of
results shown in Table 6.7, it can be stated that the FitPSO performs better than the PSO
2011 and ABC algorithms for the considered engineering problems.

Further, the Mann-Whitney U rank sum test as mentioned in section 6.4.4 is applied
to the considered algorithms for the average number of function evaluations of 100 simula-
tions. The result of the test is shown in Table 6.8. It is clear from Table 6.8 that FitPSO is
an cfficient algorithms in the same category.

Table 6.8: Comparison based on mean function evaluations and the Mann-Whitney U rank
sum test at a o = 0.05 significance level (‘+’ indicates FitPSO is significantly better), TP:
Test Problem.

FitPSO FitPSO

Function| /4 Vs

PSO ABC
E, + +
By + +
E3 + +

6.6 Conclusion

In this chapter, inspired from onlooker bee phase of ABC algorithm, a new solution search
phase is introduced in PSO. In the proposed phase, solutions get chance to update them-
selves on the basis of probability which is a function of fitness. In this way, the high fit
solutions get more chance to update themselves as compared to low fit solutions. Further,
velocity update equation of PSO is also modified and the previous best learning component
(cognitive component) is deleted from the velocity update equation. This modification helps
the solutions to converge fast to the global optima. Through the experiments on 15 complex
well known benchmark functions and three real world engineering optimization problems,
it is shown that the proposed strategy is a competitive candidate in the field of swarm
intelligence based algorithms.
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Chapter 7

FitPSO for Large Scale Job
Shop Scheduling

The large-scale job-shop scheduling problem (LSJSSP) is among one of the complex schedul-
ing problems. Researchers are continuously working to deal with the LSJSSP through ap-
plying the various probabilistic algorithms which includes swarm intelligence based as well
as the evolutionary algorithms even though not able to get the optimum results and it is
still an interesting area. Therefore, in this chapter a recently developed non-deterministic
algorithm namely fitness based particle swarm optimization (FitPSO) is applied to solve
the LSJSSP problem instances. In the proposed solution, fitness based solution update
strategy is incorporated with the PSO strategy to get the desired results. The obtained out-
come is motivating and through results analysis, a confidence is achieved that the proposed
FitPSO can be recommendation to solve the existing and the new LSJSSP instance. A fair
comparative analysis is also presented which also supports the proposed recommendation.
The remainder of the chapter is structured as follows: FitPSO is explained in Section
7.2. Formulation of LSJSSP is discussed during the section 7.3. The entire process for
solving LSJSSP using the proposed strategy is discussed in section 7.4. The implementation
and experimental results are shown in section 7.5. Finally, the section 7.6 summarises the

proposed work and suggests future research directions.

7.1 Introduction

Efficient scheduling is crucial for making the best use of available resources. In the domain
of production management, the Large Scale Job-shop Scheduling Problem (LSJSSP) is a
complicated combinatorial optimization problem. JSSP needs n jobs to be accomplished on
m systems (machines). The system order for all jobs is fixed and varies depending on the
jobs. The jobs are put in place in a non-preemptive manner, which means that while one
job is running on one system, it cannot be disrupted by another. The primary goal of JSSP
is to find an appropriate sequence scheme that reduces the time it takes for all jobs to be
completed, which is referred to as makespan (M S). The goal is to minimize the makespan
(MS) [102, 103].

The LSJSSP is one of the most important NP-hard problem. To solve LSJSSP, sev-
eral deterministic conventional mathematical models and heuristic methods have been used.
To small size LSJSSP cases, mathematical models have a successful solution in a reasonable
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amount of time. [104]. The computational time increases exponentially as the size of the
instances grows. So, for a larger scale LSJSSP, Non-conventional nature inspired algorithms
(NIAs) are preferred alternatives [105]). The numerous processes found in nature are used
to create NIAs. Swarm intelligence based algorithms (SIA) and evolutionary algorithms
(EAs) are the two main types of NTAs. The design of SIA was influenced by the intellectual
actions of creatures. Some state-of-art SIA are Artificial bee colony (ABC)[4], spider mon-
key optimization (SMO) [12], teaching learning based optimization (TLBO) [11] etc,. EAs
like differential evolution (DE) [106], genetic algorithm (GA) [107] etc., are based on biotic
transformation like crossover, selection etc.

In recent years, NIAs are performing very well to solve physical world problems
[108, 5]. In this series, many NIAs emerged well to solve LSJSSP such as genetic algorithm
(GA) [109], particle swarm optimization (PSO) [110], hybrid biogeography based optimiza-
tion (BBO) algorithm [111], hybrid differential evolution algorithm [112], multiple type
individual enhancement PSO (MPSO) algorithm [113], classical LSISSP [114], differential
based harmony search algorithm with variable neighborhood search [115], biased random key
genetic algorithm [116], new neighboured structure based algorithm [105], teaching learn-
ing based optimization (TLBO) algorithm [117], improved ABC (IABC) algorithm [118],
discrete ABC (DABC) [14], best so far ABC [119], parallel ABC (pABC) algorithm [120],
beer froth ABC [5] etc. In terms of computational time and solution efficiency, the obtained
results are acceptable. At the same time, finding a solution for larger JSSP instances is
a challenging task. These findings motivate researchers to continue their work in order to
solve LSJSSP.

So in this chapter, a novel solution is proposed to solve the LSJSSP instances through
the recent variant of PSO algorithm, namely fitness based particle swarm optimization al-
gorithm (FitPSO). The FitPSO algorithm was developed by K. Sharma et. al. [152]. In the
FitPSO algorithm, a fitness based solution search mechanism is incorporated in the stan-
dard PSO. As the FitPSO algorithm efliciently balances the diversification of the population
during the solution search process [152]. In this chapter the FitPSO algorithm is applied
to solve 105 LSJSSP instances. The results are analysed and compared to other important
methods available in the literature. The obtained findings substantiate the validity of the
proposed strategy.

7.2 Fitness Based PSO

PSO is an optimization technique which simulates the birds flocking behavior. PSO is a
dynamic population of active, interactive agents with very little in the way of inherent
intelligence. In PSO, whole group is called swarm and each individual is called particle
which represents possible candidate’s solution. The swarm finds food for its self through
social learning by observing the behavior of nearby birds who appeared to be near the food
source. Initially each particle is initialized within the search space randomly and keeps the
information about its personal best position known as pbest, swarm best position known as
gbest and current velocity V' with which it is moving, in her memory. Based on these three
values, each particle updates its position. In this manner, whole swarm moves in better
direction while following collaborative trail and error method and converges to single best
known solution.

For an D dimensional search space, the i*” particle of the swarm is represented by a
D- dimensional vector, X; = (x;1, 2, ..., Z;p). The velocity of this particle is represented
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by another D-dimensional vector V; = (v;1, v42, -..., v;p). The previously best visited position
of the ** particle is denoted as P; = (ps1, Pi2; ..., Dip). ¢ is the index of the best particle
in the swarm. PSO swarm uses two equations for movement called velocity update equation
and position update equation. The velocity of the " particle is updated using the velocity
update equation given by equation (7.1) and the position is updated using equation (7.2).

Vij = Vij + 017"1(pij - l’j,j) + CQTQ(pgj — Zl?ij) (7].)

Tij = Tij + Vij (7.2)

where j7 = 1,2,...,D represents the dimension and ¢ = 1,2,...,S represents the
particle index. S is the size of the swarm and ¢; and ¢y are constants (usually ¢; = cg),
called cognitive and social scaling parameters respectively or simply acceleration coefficients.
r1 and 7 are random numbers in the range [0, 1] drawn from a uniform distribution.

The right hand side of velocity update equation (7.1) consists of three terms, the
first term wv;; is the memory of the previous direction of movement which can be thought
of as a momentum term and prevents the particle from drastically changing direction. The
second term ¢, 71 (p;j — ;) is called cognitive component or persistence which draws particle
back to their previous best situation and enables the local search in swarm. The last term
car2(pg; — 45) is known as social component which allows individuals to compare themselves
to others in it’s group and is responsible for global search. The Pseudo-code for Particle
Swarm Optimization, is described as follows :

Algorithm 7.1 Particle Swarm Optimization Algorithm:

Initialize the parameters, w, ¢; and ca;
Initialize the particle positions and their velocities in the search space;
Evaluate fitness of individual particles;
Store ghest and pbest;
while stopping condition(s) not true do
for each individual, X; do
for each dimension j, x;; do
(i) Evaluate the velocity v;; using (7.1);
(ii) Evaluate the position z;; using (7.2);
end for
end for
Evaluate fitness of updated particles;
Update gbest and pbest;
end while
Return the individual with the best fitness as the solution;

Based on the neighborhood size, initially two versions of PSO algorithm were pre-
sented in literature namely, global version of PSO which is the original PSO (PSO-G) and
the local version of PSO (PSO-L)[39]. The only difference between PSO-G and PSO-L is
that the term p, in social component in velocity update equation (7.1). For PSO-G, it
refers the best particle of whole swarm while for PSO-L it represents the best particle of
the individual’s neighborhood. The social network employed by the PSO-G reflects the star
topology which offers a faster convergence but it is very likely to converge prematurely.
While PSO-L uses a ring social network topology where smaller neighborhoods are defined
for each particle. It can be casily observed that due to the less particle inter connectivity in
PSO-L, it is less susceptible to be trapped in local minima but at the cost of slow conver-
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gence. In general, PSO-G performs better for unimodal problems and PSO-L for multimodal
problems.

However the standard PSO has the capability to get a good solution at a significantly
faster rate but, when it is compared to other optimization techniques, it is weak to refine
the optimum solution, mainly due to less diversity in later search [153]. On the different
side, problem-based tuning of parameters is also important in PSO, to get optimum solution
accurately and efficiently[143]. In standard PSO velocity update equation (7.1) contains
three terms. The first term has the global search capability, the second and third terms
are the particles cognitive and social information sharing capability respectively. More
cognitive capability force particle to move towards personal best position fast and more
social information force particle to move towards global best position fast. It can be seen
from (7.1), the movement of swarm towards optimum solution is guided by the acceleration
factor ¢; and co. Therefore, acceleration coefficient ¢; and ¢o should be tuned carefully to
get the desired solution.

Kennedy and Eberhart [88] explained that more value of the cognitive component
compared to the social component, results in excessive wandering of individuals through
the search space while on the other hand more value of the social component may results
that particles will converge prematurely toward a local optimum. These two component play
important role for balancing the exploration and exploitation capabilities of PSO. Therefore,
in this chapter two modifications are proposed for improving the solution search efficiency
of PSO.

1. Velocity update equation of PSO is modified as follows, here w is the inertia weight:
Vij =W X V5 + ¢ X T(Pgj — Tij) (7.3)

Tt is clear from equation (7.3) that the Pbest component (cognitive component) is re-
moved {c;71(psj —x45)} from the velocity update equation of PSO. Now the magnitude
of velocity of each individual will depend on its distance from the current global best
solution. Therefore, this strategy will improve the exploitation capability of PSO.

2. A new position update process, which is inspired from the Artificial Bee Colony (ABC)
algorithm’s onlooker bee phase [144] is incorporated with PSO. In employed bee phase
of ABC, all the employed bees search the food source and calculate their fitness using
equation (7.4):

if f; > 0, then fitness; =1/(1 + f;), else fitness; =1 + abs(f;). (7.4)

and then in the onlooker bee phase, onlooker bees analyze the available information
and select a solution with a probability, prob;, related to its fitness. The probability
prob; may be calculated using equation (7.5):

0.9 x fitness;(G)

prob;(G) = maz fit(G) +0.1, (7.5)

where G is the iteration counter, fitness;(G) is the fitness value of i*" solution and
maz fit(G) is the maximum fitness of the solutions in G*" iteration. Position update
equation of ABC is shown in equation (7.6):

Yij = Tij + bij(Tij — Try) (7.6)
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where k € {1,2,....,5} and j € {1,2,..., D} are randomly chosen indices, k must be
different from ¢, ¢;; is a random number between [-1, 1] and z; is a random individual
in the current population. In the basic ABC, at any given time, only one dimension is
updated in employed or onlooker bee phase. In onlooker bee phase this update takes
place based on a probability which is a function of fitness.

The proposed position update strategy is incorporated with PSO and the newly devel-
oped algorithm is named as Fitness based PSO (FitPSO). In FitPSO, Algorithm 7.2
is applied after basic PSO operators. The insertion of Algorithm 7.2 makes FitPSO
more capable of exploitation in the better search regions. It is expected because in
FitPSO after applying basic PSO operators, better candidate solutions are offered more
chances to update themselves than worse candidates. The pseudo-code of the proposed
position update strategy which works after PSO operators is shown in Algorithm 7.2.

Algorithm 7.2 Fitness based Position Update Phase:

for each individual, z; do
if prob; > rand(0,1) then
Yij = Tij + Gij(Ti5 — Tuj),
Calculate fitness of y;,
Apply greedy selection between y; and j,
end if
end for

The Pseudo-code for the proposed FitPSO algorithm is shown in Algorithm 7.3.

7.3 Job shop scheduling problem organisation

The LSJSSP can be interpreted in following manner: There are a set of 72 jobs to be processed
using m machines. To complete the execution, each job has to be passed through all the m
systems in a given predefined sequence. Each job consists of total m operations. To perform
operations a job uses one of the machine. When any of the job is executing on any machine
it cannot be interrupted by other jobs. The total number of operations are m x n that are
scheduled on m systems [123].

The objective of the LSJSSP is to minimize the total completion time for all the
jobs i.e. makespan (M S). Mathematically the problem is stated as :

Minimize M Sz (7.7)

where, MSmax :max(MSl,MSQ,JMSg,MS4, ......... MSn) MSl,MSQ,M33,MS4, ........ ,MSn

are the completion time for all the n jobs. Followings are the constraints for LSISSP [116]:

e Fach system can process at most one operation at a time.

e The completion time of any operation must be a positive integer.

o Precedence relationships among the different jobs must be satisfied.
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Algorithm 7.3 Fitness based Particle Swarm Optimization(FitPSO):

Initialize the parameters, w, and ¢ and S;
Initialize the particle positions and their velocities in the search space;
Evaluate fitness of individual particles;
Store the gbest solution;
while stopping condition(s) not true do
for each individual, X; do
for each dimension j of z;; do
(i) Evaluate the velocity v;; using (7.3);
(ii) Evaluate the position x;; using (7.2);
end for
end for
Evaluate fitness of updated particles;
Update gbest solution;
JFFRR A, Fitness based position update phase in FitPSQ ##etrsick /
t=1,i=1 /*** ¢ counts number of updates ***/
while t < S do
if prob; > rand(0, 1) then
JFFREEE prob; is the probability of an individual x; described by equation (7.5)****/

Yij = Tij + G (Ti5 — Tij),
{k, 7 is randomly selected index}
Calculate fitness of ¥;;
Apply greedy selection between ;i and zj.;
t=t+1
end if
i=1+1
if 4 > S then
i=1
end if
end while
end while
Return the individual with the best fitness as the solution;
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7.4 FitPSO for LSJSSP

The FitPSO algoritm is used to solve LSJSSP instances, and the whole method is detailed
here. Since LSJSSP is a discrete optimization problem, a solution in the proposed algorithm
is a discrete valued vector (representing a potential operation scheduling list). The reordering
of jobs for FitPSO is used to estimate ecach solution in the search field. To generate the
discrete valued sequence from a continuous valued vector we have used random key encoding
(RKE) scheme [124].

In RKE encoding scheme, first a continuous valued vector is sorted in an ascending
order using an integer series from 1 to n x m, where n represents the total number of jobs
and m shows the total number of available systems. As each job has to go through m
systems for completing its execution so further transformation from this integer sequence is
performed using (Integer value mod n + 1). The integer series is transformed to operation
order sequence using this transformation, and each job index has m occurrences. Figure
7.1 depicts the transformation of a continuous valued vector into a discrete valued vector,
followed by an operation scheduling sequence. Our goal is to find an operation sequencing
list (a vector of discrete values) that decreases the makespan value. The goal is to figure out
a series of operations that reduces the overall time it takes to complete all of the jobs. The
detailed procedure is described in the subsequent steps:

Continuous 09| 0.6 0.8 0.2 0.5 0.3
valued solution
Decoded as 6 4 5 1 3 2
Operation 1 2 3 2 1 3
sequence

Figure 7.1: Random Key (RKE) Encoding Scheme

Step 1:

The parameters of the proposed FitPSO algorithm namely, cognitive, social scaling param-
eters (c1, c2), Inertia Weight (w), total members of population (solution agents), and total
number of iterations are initialized. Each solution agent is initialized in the search space in
a uniformly distributed way. As all the initialized sources are continuous in nature so RKE
scheme is used to generate the corresponding discrete valued operation sequence. Now the
MS value (objective value) for each operation sequence is calculated.

Step 2:

As the step 2 and 3 are iterative steps, the solutions refined themselves in these steps to
get the optimum solution. In step2, all the solution agents update themselves using the
standard PSO algorithm. The updated solution agent is in continuing form, so again RKE
encoding scheme is applied to alter this continuous valued solutions in to corresponding
discrete operation sequence list. The MS value for this operation sequence is computed.
The pbest and gbest solutions are updated on the basis of the MS value.
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Step 3:

In this step, the probability for all the solution agents are assessed using the equation 7.5.
This probability will help to decide that which solution is high fit than the other solutions
in the swarm. The solution agents are chosen and updated as per the equation 7.5. Again
the solution agent is updated based upon the information obtained from the neighbouring
solution agents. To obtain the corresponding operation sequence, RKE scheme is applied
on the produced continuous valued solution agent. The MJS value is computed from the
generated operation sequence and the pbest and gbest solutions are updated.

Step 4:

In this step, the best solution found so far is memorized (gbest solution). Thus obtained
solution is termed is the optimum solution generated by the FitPSO.

The pseudo-code of the designed approach for LSISSP is shown in Algorithm 7.4.

Algorithm 7.4 FitPSO algorithm for LSJSSP

Parameter Initialization

Total solution agents = T'SA

D (Dimension) = m X n

Total generation count = MGN

CurrentIndex=1

Step 1: Random initialization of the Solution members in the search space

Conversion of continuous valued solution agents into an operation sequence (discrete valued solutions) to deal LSJSSF
using RKE scheme

M S value Computation for every operalion sequence.

‘While (CurrentIndex < MGN) dc

e Step 2: PSO stage:

e for each individual, X; dc
for each dimension j of z;; do

(i) Evaluate the velocity 45 using (7.3);
(ii) Evaluate the position z;; using (7.2);
end for

e end for

Obtain the new discrete operation sequence {rom the recently revised continuing solution agents using RKE scheme.

o MS value computation for recently produced operation sequence

Evaluate fitness of updated particles;

e Update the respective pbest solutions;

e Update gbest solution;

e Step 3: FitPSO stage:

e Probability prot; computation using equation 7.5 for each solution agent.
e t =1,i=1 /*** { counts number of updates ***/

e while ¢t < S do

if prot; > rand(0. 1 then
vij = Tij + Gz (ai; — Trj)
{k,j is randomly selected index}
Calculate fitness of y’;
Apply greedy selection between ¥, and 7.
Obtain the new discrete operation sequence {rom the recently revised continuing solution agents using RKE
scheme
M S value computation for recently produced operation sequence.
Evaluate fitness of updated particles
Update the respective pbest solutions
t=1+1

end if

1=1+1

if ¢ > S then

i=
end if

e end while

e Update gbest solution;

o Step 4: Memorize the best solution found so far.

CurrentIndex=CurrentIndex-+1.
end while

Output the best solution
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7.5 Implementation and experimental results

To prove the effectiveness of FitPSO algorithm, it is applied on LSJSSP instances. Following
105 LSJSSP instances are considered for experimentation [125, 126, 127].

e 15 SWV instances
e 50 TA instances
e 40 DMU instances

To attain the least M.S value for all these 105 LSJSSP instances is the main goal. The

experimental setting is listed as below:
1. Number of run =10
2. Number of maximum iteration =2000
3. Number of solution agents TSA =50
4. Dimension D = Number of systems x Number of jobs
5. Inertia weight w = 0.8,
6. Acceleration coeflicients ¢ = ¢; = ¢a = 0.5 + log2 (for PSO)[145],

The parametric ambience for the FitPSO approach and the other considered ap-
proaches are kept same in terms of swarm size and maximum number of iterations to carry
out an equitable comparison.

The reported results of FitPSO are compared with the following state-of-art algo-
rithms available in the literature:

e Biased random key genetic algorithm (BRKGA-JSP) [116]

A guided tabu search for LSJSSP (NKPR) [128]

Teaching learning based optimization method (TLBO) [129]

Differential based harmony search (DHS) algorithm [115]

A tabu search to solve LSJSSP (TS) [130]

e An advanced tabu search algorithm for LSISSP (i-TSAB) [131]

AlgFix [132]

A tabu search/simulated annealing algorithm for LSJSSP (T'S/SA) [133]

Global equilibrium search technique (GES) [134]

The obtained results for the above three instances are represented in Tables 7.1 to
7.3. These tables list the name of the instance, its size, the lower bound (LB), the upper
bound (UB) for the best known solution (BKS), the BKS obtained by FitPSO approach,
and BKS value obtained from the compared algorithms. The obtained results for all the
instances demonstrate that the proposed FitPSO is superior approach in reference to M S
value during assessment with other considered approaches.
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Table 7.1: Comparison in terms of best MS value for SMV instances

Instance Size LB UB FitPSO | FABC BRKGA-JSP | TS/SA TS
SWVo01 20 x 10 | 1407 1407 1407 1407 1407 1412 -
SWV02 20 x 10 | 1475 1475 1475 1475 1475 1475 -
SWV03 20 x 10 | 1369 1398 1392 1395 1398 1398 -
SWV04 20 x 10 | 1450 1474 1468 1465 1470 1470 -
SWV05 20 x 10 | 1424 | 1424 1424 1424 1425 1425 -
SWV06 20 x 15 1591 1678 1662 1674 1675 1679 -
SWVO07 20 x 15 1446 1600 1548 1572 1594 1603 -
SWV08 20 x 15 1640 1763 1756 1762 1755 1756 -
SWV09 20 x 15 1604 | 1661 1654 1650 1656 1661 -
SWV10 20 x 15 1631 1767 1729 1736 1743 1754 -
SWV11 50 x 10 | 2983 | 2983 2983 2983 2983 - 2983
SWV12 50 x 10 | 2972 | 2979 2974 2975 2979 - 2979
SWV13 50 x 10 | 3104 | 3104 3104 3104 3104 - 3104
SWV14 50 x 10 | 2968 | 2968 2968 2968 2968 - 2968
SWV15 50 x 10 | 2885 | 2886 2885 2885 2901 - 2886

Further to analyse the outcomes, average relative percentage error (RPE) is also
calculated and compared as tabulated in Table 7.4. The value of RPE is computed (with

respect to the UB value of an instance) as per demonstrated in equation 7.8.

Here, BK Sq4, represents the MS value obtained using the considered approaches.
The attained outcomes of Table 7.4 demonstrate the significant improvement in the average

RPE =100 x (BK S50 —

B)/UB

RPE which assures the authenticity of the introduced approach.
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Table 7.2: Comparison in terms of best MS value for TA instances

Instance Size LB UB FitPSO FABC BRKGA-JSP GES | AlgFix | i-TSAB TS/SA | DHS TLBO NKPR
TAO1 15 x 15 1231 1231 1231 1231 1231 1231 1231 - 1231 1321 1526 1485
TAO02 15 x 15 1244 1244 1244 1244 1244 1244 1244 - 1244 1313 1538 1476
TAO3 15 x 15 1218 1218 1218 1218 1218 1218 1218 - 1218 1327 1594 1470
TA04 15 x 15 1175 1175 1175 1175 1175 1175 1175 - 1175 1285 1550 1519
TAO5 15 x 15 1224 1224 1224 1224 1224 1224 1224 - 1224 1315 1551 1381
TAO06 15 x 15 1238 1238 1238 1238 1238 1238 1238 - 1238 1346 1538 1517
TAO7 15 x 15 1227 1227 1227 1227 1228 1228 1228 - 1228 1322 1546 1460
TAO08 15 x 15 1217 1217 1217 1217 1217 1217 1217 - 1217 1304 1534 1446
TA09 15 x 15 1274 1274 1274 1274 1274 1274 1274 - 1274 1386 1614 1551
TA10 15 x 15 1241 1241 1241 1241 1241 1241 1241 - 1241 1334 1542 1365
TA11 20 x15 1323 1357 1348 1355 1357 1357 1358 1361 1359 1520 1876 1687
TA12 20 x15 1351 1367 1367 1367 1367 1367 1367 - 1371 1563 1856 1770
TA13 20 x15 1282 1342 1342 1342 1344 1344 1342 - 1342 1513 1849 1713
TA14 20 x15 1345 1345 1345 1345 1345 1345 1345 - 1345 1477 1780 1748
TA15 20 x15 1304 1339 1334 1337 1339 1339 1339 - 1339 1557 1929 1788
TA16 20 x15 1302 1360 1360 1360 1360 1360 1360 - 1360 1543 1852 1716
TA17 20 x15 1462 1462 1462 1462 1462 1469 1473 1462 1464 1607 1941 1781
TA18 20 x15 1369 1396 1396 1396 1396 1401 1396 - 1399 1601 1817 1776
TA19 20 x15 1297 1332 1330 1331 1332 1332 1332 1335 1335 1524 1842 1722
TA20 20 x15 1318 1348 1348 1348 1348 1348 1348 1351 1350 1554 1902 1710
TA21 20 x 20 1539 1643 1637 1642 1642 1647 1643 1644 1644 1854 2399 2165
TA22 20 x 20 1511 1600 1600 1600 1600 1602 1600 1600 1600 1852 2241 2126
TA23 20 x 20 1472 1557 1555 1557 1557 1558 1557 1557 1560 1765 2210 2145
TA24 20 x 20 1602 1646 1646 1646 1646 1653 1646 1647 1646 1829 2241 2173
TA25 20 x 20 1504 1595 1592 1594 1595 1596 1595 1595 1597 1792 2324 2117
TA26 20 x 20 1539 1645 1639 1641 1643 1647 1647 1645 1647 1863 2299 2206
TA27 20 x 20 1616 1680 1680 1680 1680 1685 1686 1680 1680 1905 2436 2194
TA28 20 x 20 1591 1603 1599 1600 1603 1614 1613 1614 1603 1819 2333 2100
TA29 20 x 20 1514 1625 1625 1625 1625 1625 1625 - 1627 1853 2280 2146
TA30 20 x 20 1473 1584 1584 1584 1584 1584 1584 1584 1584 1812 2247 2103
TA31 30 x15 1764 1764 1764 1764 1764 1764 1766 - 1764 2037 2528 2382
TA32 30 x15 1774 1790 1779 1781 1785 1793 1790 - 1795 2106 2591 2482
TA33 30 x15 1778 1791 1791 1791 1791 1799 1791 1793 1796 2091 2685 2511
TA34 30 x15 1828 1829 1830 1832 1829 1832 1832 1829 1831 2089 2508 2480
TA35 30 x15 2007 | 2007 2007 2007 2007 2007 2007 - 2007 2139 2509 2512
TA36 30 x15 1819 1819 1819 1819 1819 1819 1819 - 1819 2086 2705 2395
TA37 30 x15 1771 1771 1738 1728 1771 1779 1784 1778 1778 2067 2512 2436
TA38 30 x15 1673 1673 1673 1673 1673 1673 1673 - 1673 1980 2488 2250
TA39 30 x15 1795 1795 1795 1795 1795 1795 1795 - 1795 2010 2439 2501
TA40 30 x15 1631 1673 1668 1665 1669 1680 1979 1674 1676 1986 2455 2380
TA41 30 x 20 1859 | 2006 2006 2006 2008 2008 2022 - 2018 - - -
TA42 30 x 20 1867 1945 1931 1934 1937 1956 1953 1956 1953 - - -
TA43 30 x 20 1809 1814 1828 1836 1852 1870 1869 1859 1858 - - -
TA44 30 x 20 1927 1983 1983 1983 1983 1991 1992 1984 1983 - - -
TA45 30 x 20 1997 | 2000 2000 2000 2000 2004 2000 2000 2000 - - -
TA46 30 x 20 1940 | 2008 2002 2000 2004 2011 2011 2021 2010 - - -
TA47 30 x 20 1789 1897 1892 1892 1894 1903 1902 1903 1903 - - -
TA48 30 x 20 1912 1945 1935 1940 1943 1962 1962 1953 1955 - - -
TA49 30 x 20 1915 1966 1960 1962 1964 1969 1974 - 1967 - - -
TA50 30 x 20 1807 1925 1925 1925 1925 1931 1927 1928 1931 - - -
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Table 7.3: Comparison in terms of best MS value for DMU instances

Instance Size LB UB FitPSO FABC BRKGA-JSP TS GES i-TSAB AlgFix
DMUO1 20 x15 2501 2563 2563 2563 2563 2566 2566 2517 2563
DMUO02 20 x15 2651 2706 2701 2704 2706 2711 2706 2715 2706
DMUO03 20 x15 2731 2731 2731 2731 2731 - 2731 - 2731
DMUO04 20 x15 2601 2669 2669 2669 2669 - 2669 - 2669
DMUO05 20 x15 2749 | 2749 2749 2749 2749 - 2749 - 2749
DMUO06 20 x 20 | 2834 | 3244 3241 3242 3244 3254 3250 3265 3244
DMUO07 20 x 20 | 2677 | 3046 3045 3045 3046 - 3053 - 3046
DMUO08 20 x 20 | 2901 3188 3188 3188 3188 3191 3197 3199 3188
DMU09 20 x 20 | 2739 | 3092 3090 3091 3092 - 3092 3094 3096
DMU10 20 x 20 | 2716 | 2984 2982 2982 2984 - 2984 2985 2984
DMU11 30 x 15 | 3395 | 3453 3453 3454 3445 3455 3453 3470 3455
DMU12 30 x 15 | 3481 3516 3512 3512 3513 3516 3518 3519 3522
DMU13 30 x 15 | 3681 3681 3681 3681 3681 3681 3697 3698 3687
DMU14 30 x 15 | 3394 | 3394 3394 3394 3394 - 3394 3394 3394
DMU15 30 x 15 | 3332 | 3343 3343 3343 3343 - 3343 - 3343
DMU16 30 x 20 | 3726 | 3759 3748 3748 3751 3759 3781 3787 3772
DMU17 30 x 20 | 3697 | 3836 3830 3828 3830 3842 3848 3854 3836
DMU18 30 x 20 | 3844 | 3846 3844 3844 3844 3846 3849 3854 3852
DMU19 30 x 20 | 3650 | 3775 3768 3769 3770 3784 3807 3823 3775
DMU20 30 x 20 | 3604 | 3712 3712 3712 3712 3716 3739 3740 3712
DMU21 40 x 15 | 4380 | 4380 4380 4380 4380 - 4380 - 4380
DMU22 40 x 15 | 4325 4725 4725 4725 4725 - 4725 - 4725
DMU23 40 x 15 | 4668 | 4668 4668 4668 4668 - 4668 - 4668
DMU24 40 x 15 | 4648 | 4648 4648 4648 4648 - 4648 - 4648
DMU25 40 x 15 | 4164 | 4164 4164 4164 4164 - 4164 - 4164
DMU26 40 x 20 | 4647 | 4647 4647 4647 4647 4647 4667 4679 4688
DMU27 40 x 20 | 4848 | 4848 4848 4848 4848 - 4848 4848 4848
DMU28 40 x 20 | 4692 4692 4692 4692 4692 - 4692 - 4692
DMU29 40 x 20 | 4691 4691 4691 4691 4691 - 4691 4691 4691
DMU30 40 x 20 732 4732 4732 4732 4732 - 732 4732 4749
DMU31 50 x 15 | 5640 | 5640 5640 5640 5640 - 5640 - 5640
DMU32 50 x 15 | 5927 | 5927 5927 5927 5927 - 5927 - 5927
DMU33 50 x 15 | 5728 5728 5728 5728 5728 - 5728 - 5728
DMU34 50 x 15 | 5385 5385 5385 5385 5385 - 5385 - 5385
DMU35 50 x 15 | 5635 5635 5635 5635 5635 - 5635 - 5635
DMU36 50 x 20 | 5621 5621 5621 5621 5621 - 5621 - 5621
DMU37 50 x 20 | 5851 5851 5851 5851 5851 - 5851 5851 5851
DMU38 50 x 20 | 5713 5713 5713 5713 5713 - 5713 - 5713
DMU39 50 x 20 | 5747 5747 5747 5747 5747 - 5747 - 5747
DMU40 50 x 20 | 5577 5577 5577 5577 5577 - 5577 - 5577




Table 7.4: Comparison based upon Average RPE

Approach Instances ARPE FitPSO(%)| Improvement
Solved (%) (%)

TA instances

BRKGA-JSP [116] 50 0.015 -0.131 0.146
GES [134] 50 0.218 -0.131 0.349
AlgFix [132] 50 0.556 -0.131 0.687
i-TSAB [131] 25 0.269 -0.21 0.479
TS/SA [133] 50 0.156 -0.131 0.287
DHS [115] 40 12.412 -0.13 12.542
TLBO [129] 40 36.883 -0.13 37.013
NKPR [128] 40 28.951 -0.13 29.081
FABC 50 -0.093 -0.131 0.038

DMU Instances

BRKGA-JSP [116] 40 -0.021 -0.031 0.01
TS [130] 13 0.097 -0.083 0.18
GES [134] 40 0.107 -0.031 0.138
i-TSAB [131] 20 0.24 -0.06 0.3
AlgFix [132] 40 0.056 -0.031 0.087
FABC 40 -0.027 -0.031 0.004

SWU Instances

BRKGA-JSP [116] 15 -0.156 -0.559 0.403
TS/SA [133) 10 -0.073 -0.818 0.745
TS [130] 5 0 -0.04 0.04
FABC 15 -0.364 -0.559 0.195

7.6 Conclusion

This article proposed a solution to solve 105 large scale instances of job shop scheduling
problem (LSJSSP) using an efficient fully informed artificial bee colony (FitPSO). In FitPSO
algorithm, to balances the diversification in the swarm during the solution search process,
a fitness based strategy is incorporated in the standard PSO algorithm. The MS time is
used as an evaluation criterion in the LSJSSP. The results are analysed and compared to
cutting-edge techniques proposed by a number of researchers. According to the results of the
experiments, the proposed solution gives better solution. In Future, some more performance
metrics may be considered for experimentation.
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Chapter 8

Conclusion and Future Work

This chapter forms the concluding part of the Thesis and also proposes some suggestions
to extend the present work.. This chapter provides the conclusion and future work for the
research work carried out in this thesis. Section 8.1 discusses about conclusion for proposed
approaches. Section 8.2 lists some future direction to extend this work.

8.1 Conclusion

The primary goals of this work are to produce some improvements in Artificial Bee Colony
(ABC) and Particle Swarm Optimization (PSO) algorithms for the numerical optimization
. For improvements in ABC and PSO, the main focus is on creating diversity in the search
process and balancing the exploration and exploitation capabilities of both the algorithms.
The significant research contributions of this thesis are three new variant of nature inspired
algorithms. Here, two new variant of ABC and one unique variant of PSO proposed and de-
ployed for solving real world problem. First variant is limacon-based local search in ABCA,
and the designed strategy is named Limacon inspired ABC (LABC) algorithm. Then, the
exploitation capability of the LABC strategy is tested over 18 complex benchmark optimiza-
tion problems. Finally, the test results are compared with similar state-of-art algorithms,
and statistical analysis shows the LABC can be considered a practical variant of the ABC
algorithms to solve the complex optimization problems.

The second variant is Fully Informed Artificial Bee Colony (FABC) algorithm. FABC
is applied to solve the 105 LSJSSP instances. The FABC algorithm is developed by taking
inspiration from the GABC algorithm position update process. In the FABC, the onlooker
bee process of the Artificial Bee Colony (ABC) algorithm is modified and designed such that
the new position of the solution search agent is obtained while learning from all the nearby
agents. The results obtained by the FABC are compared with the state-of-art algorithms.
The results analysis shows that the proposed approach to solving LSJSSP is competitive in
the field of SIA.

Third variant is fitness-based particle swarm optimization (FitPSO). FitPSO is ap-
plied to solve the LSJSSP problem instances. Here, a fitness-based solution update strategy
is incorporated with the PSO strategy to get the desired results in the proposed solution.
The obtained outcome is motivating, and through results analysis, confidence is achieved
that the proposed FitPSO can be a recommendation to solve the existing and the new
LSJSSP instance. A fair comparative analysis is also presented, which also supports the
proposed recommendation.
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8.2 Future Work

In the future, the proposed ABC variants like FABC, LABC and PSO variant (FitPSO) may
be applied to solve engineering optimization problems. The applications of variants of ABC
and PSO can be continued to unexplored areas of other scheduling problems like dynamic
job shop scheduling, ow shop scheduling, batch scheduling, and more complex model of
real-world problems. Further, more performance measure parameters may also be included
in the engineering optimization problems. The problem-specific efficiency of the proposed
variants of ABC and PSO may also be evaluated in the future. The developed variants may
also be improved for better accuracy, reliability, and efficiency for benchmark functions as

well as for real-world optimization problems.
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Summary

Swarm intelligence (SI) techniques are based on the aggregate cognitive behaviour of numer-
ous species found in nature. These SI-based methods perform well in determining the answer
to real-life complicated optimization issues. The artificial bee colony (ABC) method, for ex-
ample, is one of the most efficient SI-based theorems. The ABC is based on a mathematical
modelling of honey bee food gathering behaviour. However, ABC and PSO, like other SI-
based methods, suffer from early convergence, stagnation, and the inability to unfold the
real results for optimization problems.

The basic ABC and PSO algorithm is revised in this thesis utilising many techniques
to solve current limitations and improve the execution ability of the ABC and PSO algorithm.
Two novel ABC variants, Limacon-inspired ABC and Fully Informed ABC., are created in this
study, as well as one new PSO variation, Fitness-based PSO. Furthermore, these variations
are used to address a real-world difficult optimization issue, namely the scheduling problem
for a work shop (JSSP).

To begin, ABCA incorporates an influential local search (LS) approach inspired by
the limacon curve, and the resulting strategy is known as the Limacon influenced ABC
(LABC) algorithm. The LABC strategy’s exploitation capacity is next put to the test using
18 difficult benchmark optimization tasks. Finally, the test results are compared to similar
state-of-the-art algorithms, and statistical analysis demonstrates that the LABC may be used
to tackle complicated optimization problems as a realistic variation of the ABC algorithms.

In addition, the Fully Informed Artificial Bee Colony (FABC) method is created
using the position update technique of the fully informed particle swarm optimization algo-
rithm as inspiration. The Artificial Bee Colony (ABC) algorithm’s observer bee process is
updated and developed in the FABC so that the new position of the solution search agent
is acquired while learning from all surrounding agents. The ABC incorporates a unique
learning process in which people change their locations by learning from all neighbouring
solutions as well as the best solution in the swarm. In the following experiment, the FABC is
used to solve 105 LSJSSP cases. The FABC'’s findings are compared to those of state-of-the-
art algorithms. The findings demonstrate that the proposed LSJSSP solution is competitive
in the field of swarm intelligence based algorithms (SIA).

In addition, to address the LSJSSP problem cases, a fitness-based particle swarm
optimization (FitPSO) is created and deployed. To achieve the desired outcomes in the sug-
gested approach, a fitness-based solution update method is used with the PSO technique.
The acquired result is encouraging, and via examination of the data, it is clear that the sug-
gested FitPSO may be used to address both existing and new LSJSSP instances. In addition,
a fair comparative study is given, which supports the recommended recommendation.
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The artificial bee colony algorithm (ABCA) has established itself as a signature algorithm
in the area of swarm intelligence based algorithms. The hybridization of the local search
technique enhances the exploitation capability in the search process of the global optimization
strategies. In this article, an effective local search (LS) technique that is designed by taking
inspiration by limacon curve, is incorporated in ABCA and the designed strategy is named
Limacon inspired ABC (LABC) algorithm. The exploitation capability of the LABC strategy
is tested over 18 complex benchmark optimization problems. The test results are compared
with similar state-of-art algorithms and statistical analysis shows the LABC can be considered
an effective variant of the ABC algorithms to solve the complex optimization problems.

Keywords: Artificial bee colony algorithm; Swarm intelligence; Limacon curve; Local
search, Optimization

1. Introduction

The swarm intelligence (SI) derived techniques are impressive methods to deal with com-
plex optimization problems. The SI based strategies do rely upon the social intellectual
conduct of natural species. Artificial bee colony algorithm (ABCA) is a prominent SI
technique, developed by taking inspiration from the intelligent communication of honey
bees (Karaboga & Basturk, 2008; Bansal, Sharma, & Jadon, 2013). In the past, the
ABCA has been applied to many real-world complex optimization problems but it also
suffers the common problems of SI based optimization techniques like stopping to move
at the global optima and skipping the true solution due to high explorative nature of
the solution search process(Karaboga & Akay, 2009; H. Sharma, Bansal, & Arya, 2013;
Jadon, Bansal, Tiwari, & Sharma, 2014; Bansal, Sharma, Arya, Deep. & Pant, 2014;
H. Sharma, Bansal, & Arya, 2014).

The local search (LS) hybridization with the global search optimization algorithms
boosts the exploitation capability of the global search algorithms which further de-
creases the chance of skipping the true solution. So, to enhance the local searchability
in the ABCA solution search process, in this article a limacon arc inspired LS (LLS)
hybridized with ABCA. The hybridized algorithm is titled as Limacon inspired artifi-
cial bee colony (LABC) algorithm. The solution searchability of the proposed LABC is
evaluated through numerous experimentations in form of accurateness, reliability, and
consistency.

*Corresponding author. Email: nsharma@rtu.ac.in,



2. Artificial bee colony algorithm

Artificial bee colony algorithm (ABCA) is a significant strategy in the field of SI centered
strategies. ABCA was proposed by D. Karaboga in the year 2005 (Karaboga, 2005). It
is motivated by the food foraging activities of the honey bees. There are three types of
honey bees in the colony of bees that are employed honey bees, onlooker honey bees, and
scout honey bees. At the initial stage, employed honey bees go for searching the food
sources. They collect the nectar with all the associated information and return to the
hive. They transfer knowledge associated with the food sources with the onlooker honey
bees staying at the hive. Scout honey bees search the food sources randomly depending
upon the internal motivation. Like other meta heuristic approaches, ABCA is also an
iterative process that consists of following cycles of four stages:

2.1. Inatialization stage:

The initialization of all the IV solutions take place during this stage in the D dimensional
space as per the lower bound and upper bound of all the decision parameters of the
optimization problem. The initialization for w; (i** candidate solution where ¢ = 1.....N)
is as per the following equation 1.

Wij = Wiow; + rand[0, 1)(Wupperj — Wiow;) (1)

where, wiowj and wypper; respectively represent bounds of w; in 4t direction further,
rand[0, 1] is an evenly scattered arbitrary number in the bound 0 to 1.

2.2. Employed honey bee stage:

During the employed honey bee stage, each solution of the search space is updated as
per the equation 2. The solution is modified based upon the information obtained from
any arbitrary solution of the search region. The fitness value of the newly produced
solution (nectar amount) is calculated (Akay & Karaboga, 2012). If the fitness value
of the newly produced solution is greater than that of the previous solution, the new
solution is selected for the next generation and the old one is discarded. Equation 2
represent position update equation for the i candidate solution.

wij = Wij + ¢ij(Wij — Wneighy) (2)

Where, neigh € {1,2,.... N} and j € {1.2,..., D} are arbitrarily selected indices, neigh
must be distinct from 4, and ¢;; is an arbitrary number between [-1, 1].

2.3. Onlooker honey bee stage:

When all the employed honey bees complete their task, they share all the information
regarding the nectar with the onlooker honey bees. Onlooker honey bees analyze the
information received from employed honey bees and select a food source based on a
probability value Prob;. The probability Prob; is a function of fitness and computed



using the equation 3.

Fitness;

Prob =
> imq Flitness;

(3)

where, Fitness; is representing the fitness value for the i** solution. Same as the previous
phase the position of a solution is modified based on its probability value. The fitness
value of the newly produced solution is computed. A greedy selection mechanism is
applied to select a solution for the next generation. The higher fit solution is selected for
the next generation.

2.4. Scout honey bee stage:

Scout honey bee stage is initiated when a food source is not modifying its position up to
a threshold limit. In this case, the discarded food source and the associated bee to the
discarded food source becomes scout honey bee. Now that food source is re-initialized
in the search space. Let the discarded food source is w; and j € {1,2..... D} then food
source is re-initialized as per the equation 4:

Wij = Wiow; + rand[0, 1](Wupperj — Wiow;) (4)

3. Limacon inspired local search strategy and it’s incorporation to
artificial bee colony algorithm

As per the reported literature, the ABCA experiences the issue of premature conver-
gence, stagnation, and sometimes unable to discover the true solution of an optimization
problem (Zhu & Kwong, 2010). In the past, the solution searchability of ABCA has been
enhanced by introducing LS techniques, by introducing control parameters, or by hy-
bridization with other search strategies (A. Sharma, Sharma, Bhargava, & Sharma, n.d.;
N. Sharma, Sharma, & Sharma, 2018).

Recently, an LS approach derived from the Limacon arc equation namely, Limacon
inspired local search (LLS) is reported in literature (A. Sharma, Sharma, Bhargava,
Sharma, & Bansal, 2017). In LLS, a limacon is presented as a roulette traced by the locus
of a point located on the periphery of a circle when this circle rolls around the periphery
of another circle of equal radius. It can also be represented as the roulette created when
a circle rolls around another circle with half its radius so that the tiny circle is inside
the bigger circle. This mathematical curve is inspired by the natural species limacon
more commonly known as a snail. The vertical and horizontal axis contour equations of
limacon are demonstrated in equations 5 and 6 respectively (Vermeij, 1995).

z =p=+qsing (5)

z = p =+ qcosep (6)

Here, z represents the distance of the limacon from the starting point, two constants
are represented as p and ¢, the angle of revolution is denoted by ¢. The value of ¢ is
responsible for transient phases of the curve, ¢ = 0,1,and > p represents a circular,
cardioid, and a noose curve respectively.
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The Gbest-guided Artificial Bee Colony (GABC) algorithm is a latest swarm intelligence based approach to
solve optimization problem. In GABC, the individuals update their respective positions by drawing inspiration
from the global best solution available in the current swarm. The GABC is a popular variant of Artificial Bee
Colony (ABC) algorithm and is proved to be an efficient algorithm in terms of convergence speed. But, in
this strategy, each individual is simply influenced by the global best solution, which may lead to trap in local
optima. Therefore, in this paper, a new search strategy, namely “Fully Informed Learning” is incorporated in
the onlooker bee phase of ABC algorithm. The developed algorithm is named as Fully Informed Artificial Bee
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variants of ABC. The results are very promising and show that the proposed algorithm is a competitive
algorithm in the field of swarm intelligence based algorithms.
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1. Introduction

Swarm Intelligence is one of the recent outcome of the research in the field of Nature inspired
algorithms(6, 12, 15, 17). Collaborative trial and error method is the main concept behind the
Swarm Intelligence which enables the algorithmic procedure to find the solution. D.Karaboga (9)
contributed the recent addition to this category known as Artificial bee colony (ABC) algorithm.
The ABC algorithm mimics the foraging behavior of honey bees while searching food for them.
ABC is a simple and population based optimization algorithm. Here the population consists of
possible solutions in terms of food sources for honey bees whose fitness is regulated in terms of
nectar amount which the food source contains. Artificial Bee Colony is made of three groups
of bees: employed bees, onlooker bees and scout bees. The number of employed and onlooker
bees is equal. The employed bees searches the food source in the environment and store the
information like the quality and the distance of the food source from the hive. Onlooker bees wait
in the hive for employed bees and after collecting information from them, they start searching
in neighborhood of that food sources which are having better nectar. If any food source is
abandoned then scout bee finds new food source randomly in search space. While searching
the solution of any optimization problem, ABC algorithm first initializes ABC parameters and
swarm then it requires the repetitive iterations of the three phases namely employed bee phase,
onlooker bee phase and scout bee phase.
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However the ABC achieves a good solution at a significantly faster rate but, like the other
optimization algorithms, it is also weak in refining the already explored search space. It is shown
in literature that basic ABC itself has some drawbacks like stop proceeding toward the global
optimum even though the population has not converged to a local optimum (10) and it is
observed that the position update equation of ABC algorithm is good at exploration but poor at
exploitation (19) i.e, has not a proper balance between exploration and exploitation. Therefore
these drawbacks require a modification in position update equation in ABC. To enhance the
exploitation, Wei-feng Gao et al. (8) improved position update equation of ABC such that the
bee searches only in neighborhood of the previous iteration’s best solution. Anan Banharnsakun
et al. (2) proposed the best-so-far selection in ABC algorithm and incorporated three major
changes: The best-so-far method, an adjustable search radius, and an objective-value-based
comparison in ABC. To solve constrained optimization problems, D. Karaboga and B. Akay (11)
used Debs rules consisting of three simple heuristic rules and a probabilistic selection scheme in
ABC algorithm.

In 2010, Zhu and Kwong (19) proposed an improved ABC algorithm, namely Gbest-guided
ABC (GABC) algorithm by incorporating the information of global best (Gbest) solution into
the solution search equation to improve the exploitation. But as all the individuals drawing
inspiration from the global best solution, there is a enough chance of swarm stagnation. There-
fore, in this paper, a new position update strategy, namely ”Fully Informed Learning” (14) is
incorporated in the onlooker phase of GABC algorithm. The proposed algorithm is named is
Fully Informed ABC (FABC). The FABC algorithm is tested on 20 benchmark problems and
the results are very encouraging.

Rest of the paper is organized as follows: ABC is explained in Section 2. In Section 3, FABC
algorithm is proposed and explained. In Section 4, performance of the proposed algorithm is
analyzed via numerical experiment. Finally, in Section 5, paper is concluded.

2. Artificial Bee Colony(ABC) algorithm

The ABC algorithm is divided importantly into three phases, namely employed bee phase,
onlooker bee phase, and scout bee phase. Each of the phase is explained in details in subsequent
sections. First initialization of the solutions is done as:

2.1. Initialization of the swarm

If D is the number of variables in the optimization problem then each food source z;(i =
1,2,...,8N) is a D-dimensional vector among the SN food sources and is generated using a
uniform distribution as:

Tij = Tming + 7and[0, 1](Tmazj — Tminj) (1)
here z; represents the i** food source in the swarm, Tminj and Tmag; are bounds of x; in jth
dimension and rand|0,1] is a uniformly distributed random number in the range [0, 1]. After

initialization phase ABC requires the cycle of the three phases namely employed bee phase,
onlooker bee phase and scout bee phase to be executed.

2.2. Employed bee phase

In this phase, i candidate’s position is updated using following equation:

vij = Tij + Gij(Tij — Thy) (2)
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here k € {1,2,..,SN} and j € {1,2,...,D} are randomly chosen indices and k # i. ¢y is
a random number in the range [-1,1]. After generating new position, the position with better
fitness between the newly generated and old one is selected.

2.3. Onlooker bees phase

In this phase, employed bees share the information associated with its food source like quality
(nectar) and position of the food source with the onlooker bees in the hive. Onlooker bees
evaluate the available information about the food source and based on its fitness it selects a
solution with a probability prob;. Here prob; can be calculated as function of fitness (there may
be some other):

0.9 x fitness;
bi(G) = ——————— 4+ 0.1, 3
prob(G) = = 0., 3

here fitness; is the fitness value of the i" solution and maz fit is the maximum fitness amongst
all the solutions. Based on this probability, onlooker selects a solution and modifies it using the
same equation (2) as in employed bee phase. Again by applying greedy selection, if the fitness is
higher than the previous one, the onlooker bee stores the new position in its memory and forgets
the old one.

2.4. Scout bees phase

If for a predetermined number of cycles, any bee’s position is not getting updated then that food
source is taken to be abandoned and this bee becomes scout bee. In this phase, the abandoned
food source is replaced by a randomly chosen food source within the search space. In ABC, the
number of cycles after which a particular food source becomes abandoned is known as limit
and is a crucial control parameter. In this phase the abandoned food source x; is replaced by a
randomly chosen food source within the search space using the equation (1) as in initialization
phase.

3. Fully Informed Artificial Bee Colony Algorithm

This section explains the proposed modified ABC algorithm. In ABC, at any instance, a solution
is updated through information flow from other solutions of the swarm. This position updating
process uses a linear combination of current position of the potential solution which is going to
be updated and position of a randomly selected solution as step size with a random coefficient
¢ij € [—1,1]. This process plays an important role to decide the quality of new solution. If
the current solution is far from randomly selected solution and absolute value of ¢;; is also
high then the change will be large enough to jump the true optima. On the other hand, small
change will decrease the convergence rate of whole ABC process. Further, It is also suggested
in literatures (10, 19) that basic ABC itself has some drawbacks, like stop proceeding toward
the global optimum even though the population has not converged to a local optimum and it is
observed that the position update equation of ABC algorithm is good at exploration but poor
at exploitation. Therefore, to improve the exploitation capability of ABC algorithm, in 2010,
Zhu and Kwong (19) proposed an improved ABC algorithm called Gbest-guided ABC (GABC)
algorithm by incorporating the information of global best (Gbest) solution into the solution
search equation to improve the exploitation. GABC is inspired by PSO (12), which, in order to
improve the exploitation, takes advantage of the information of the global best (ghest) solution
to guide the search by candidate solutions.
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Abstract The large-scale job-shop scheduling problem (LSJSSP) is a complex scheduling problems.
Previously, although the nature-inspired algorithm, specially the swarm intelligence (SIA) based algo-
rithms have been efficiently applied to solve the LSJSSP, finding the best solution for LSJSSP instances
remains a challenging task. Therefore, in this paper, a novel SIA is applied to solve the 105 LSJSSP
instances. The selected SIA is Fully Informed Artificial Bee Colony (FABC) algorithm. The FABC algo-
rithm is a variant of the ABC algorithm in which position update process is inspired from the GABC.
In the FABC, onlooker bee process of the ABC strategy is modified and designed such that the new
position of the solution search agent is obtained while learning from all the nearby agents. The results
obtained by the FABC is compared with the strategies available in the literature. The results analysis
shows that the proposed approach to solving LSJSSP is competitive in the field of SIA.
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1 Introduction

Efficient scheduling is crucial for making the best use of available resources. In the domain of production
management, the Large Scale Job-shop Scheduling Problem (LSJSSP) is a complicated combinatorial
optimization problem. JSSP needs n jobs to be accomplished on m systems (machines). The system
order for all jobs is fixed and varies depending on the jobs. The jobs are put in place in a non-preemptive
manner, which means that while one job is running on one system, it cannot be disrupted by another.
The primary goal of JSSP is to find an appropriate sequence scheme that reduces the time it takes for
all jobs to be completed, which is referred to as makespan (M.S). The goal is to minimize the makespan
(MS) [8,33].

The LSJSSP is one of the most important NP-hard problem. To solve LSJSSP, several deterministic
conventional mathematical models and heuristic methods have been used. To small size LSJSSP cases,
mathematical models have a successful solution in a reasonable amount of time. [1]. The computational
time increases exponentially as the size of the instances grows. So, for a larger scale LSJSSP, Non-
conventional nature inspired algorithms (NIAs) are preferred alternatives [7]. The numerous processes
found in nature are used to create NIAs. Swarm intelligence based algorithms (SIA) and evolutionary
algorithms (EAs) are the two main types of NIAs. The design of SIA was influenced by the intellectual
actions of creatures. Some state-of-art SIA are Artificial bee colony (ABC)[12], spider monkey optimiza-
tion (SMO) [4], teaching learning based optimization (TLBO) [23] etc,. EAs like differential evolution
(DE) [32], genetic algorithm (GA) [9] etc., are based on biotic transformation like crossover, selection
cte.

In recent years, NIAs are performing very well to solve physical world problems [28,27]. In 2020,
the ABC algorithm is applied to solved the colour image watermarking problem in hybrid DDS (DWT-
DCT-SVD) transform domain [30]. Further, N. Sharma ct. al proposed a new variant of ABC algorithm




for numerical optimisation problems[29]. In this series, many NIAs emerged well to solve LSJSSP such
as particle swarm optimization (PSO) [5], hybrid biogeography based optimization (BBO) algorithm
[36], genetic algorithm (GA) [10], hybrid differential evolution algorithm [21], multiple type individual
enhancement PSO (MPSO) algorithm [14], classical LSJSSP [25], differential based harmony search
algorithm with variable neighborhood search [41], biased random key genetic algorithm [11], new neigh-
boured structure based algorithm [7], teaching learning based optimization (TLBO) algorithm [13],
improved ABC (IABC) algorithm [37], discrete ABC (DABC) [38], best so far ABC [3], parallel ABC
(pABC) algorithm [2], beer froth ABC [27] etc. Further, N. S. Rathore et. al. prsented a noval WOA
based controller design in 2019 [24]. In terms of computational time and solution efficiency, the obtained
results are acceptable. At the same time, finding a solution for larger JSSP instances is a challenging
task. These findings motivate researchers to continue their work in order to solve LSJSSP.

In light of the above, this paper proposes a solution to the LSJSSP instances by using an efficient
ABC-based algorithm called Fully Informed Artificial Bee Colony (FABC).The FABC algorithm was
developed by K. Sharma et. al. [26]. The FABC algorithm is designed by taking inspiration form the
Gbest-guided ABC (GABC)[42]. Zhu and Kwong developed an efficient variant of ABC algorithm named
GABC [42], that improved exploitation capability of the solution search process while learning from
the global best (Gbest) solution. However, since every agent (solution) is inspired by the global best
approach, there is a good possibility of swarm stagnation. Therefore, the onlooker stage of the GABC
algorithm is modified to improve the exploration ability of the search agents. In the modified onlooker
bee stage “Fully Informed Learning” [15] strategy is incorporated. In this paper the FABC algorithm
is applied to solve 105 LSJSSP instances. The results are analysed and compared to other important
methods available in the literature. The reported findings substantiate the authenticity of the FABC
strategy.

The remainder of the paper is structured as follows: FABC is explained in Section 2. Formulation
of LSJSSP is discussed during the section 3. The entire process for solving LSJSSP using the proposed
strategy is discussed in section 4. The section 5 shows the parameter setting and results analysis. Finally,
the section 6 summarises the carried out work and suggests future work in the field.

2 Fully Informed ABC

The employed bee stage, onlooker bee stage, and scout bee stage are the three key phases of the Fully
Informed ABC (FABC) algorithm. In the following sections, we will go through each stage in depth.
The solution agents are initially initialised as follows:

2.1 Initialization of the solution agents

The solution agents are randomly initialized in the give search space. If the search range of the given
problem i8 [Bminj, Bmaz;) then the total number of solution agents (T'SA) are initialized as follows:

SAij = Bminj + T'[Os 1](Bmazj - Bminj) (1)

here SA; represents the " solution agent in the swarm, Byin; and Biae; are bounds of SA4; in jt*
dimension whereas [0, 1] represents the uniformly distributed random number. The range of r is [0, 1].

The initialization stage is same in all the SIAs. After this stage, the FABC executes its three stage
namely, employed bee, onlooker bee, and scout bee Cyclically.

2.2 Employed bee stage

In the employed bee stage of the FABC, every solution will get chance to update its position using the
following equation.
SAUIL‘J‘ = SALJ + 7‘[0, 1](SALJ — SAkj) + T!Jij(BBStj — SALJ) (2)

In equation 2, SAU;; is the updated position of solution SA;;. Best; is the j* element of the best
solution found so far. Further, ¢;; is a number randomly generated in the range [0, PC], where PC



FIABC for JSSP

is a positive constant and SAy; is a neighbouring solution agent. It is clear from equation 2 that the
solution agents update their positiions while learning from the nearby agents as well as attracting
towards the best solution agent in the swarm. The term 1);;(Best; — SA;;) helps the swam to converge
at the best solution location but this may lead to pre-mature convergence. Here the parameter PC
helps in balancing the exploration and convergence ability of the FABC algorithm. After getting the
updated position of the solution agent, a greedy selection mechanism (GSM) is applied between the
update position SMU;; and the old position SM;;. The best one is selected for the next stage.

2.3 Onlooker bees stage

During this process, employed bees exchange details about their food source with onlooker bees in the
comb, such as the quality, distance and direction of the food source. In terms of FABC algorithm, this
stage is used to update the solutions shared by the employed bee stage on the basis of their quality.
The quality of the solutions are measured using the probability prob; which is a function of fitness of
the solution agent. The prob; is calculated using following equation:

0.9 x f’Ltl

0.1, 3
max fit +0.4 (3)

prob; =

In equation 3, fit; shows the fitness of i*" solution agent whereas mazx fit represents the maximum
fitness in the swarm. On the basis of this prob;, the quality of the solution agent is evaluated and based
on that the solution agent is given chance to update its position. Therefore, we can say that in this stage
the better solutions will get more chance to update the positions in compare to the less fit solutions.
Further, in this stage, the fully informed learning strategy is applied in the position update process of
the solution agents. The position update equation is shown below:

fff‘(SAij — SAj)

SAUZ'J' = Tyj +r[0, 1] TSA

+ ij(Best; — SAyj) (4)

here T'SA is the total number of solution agents while other parameters are same as mentioned in
equation 2. Here, it can be observed that a solution agent achieve a new position while learning form all
the solution agents of swarm as well as direction of the best solution of the swarm. As the learning from
all the solutions is involve in this position update process, the possibility of pre-mature convergence
is reduced. the new position is achieved. So, in the fully informed learning, to update its location in
the search space, the agent gathers knowledge from all the neighbouring solutions as well as the best
solution in the swarm. The new position of the solution agent is compared with the old one using the
GSM, and the best candidate solution will take part in the next generation of the FABC;

2.4 Scout bees stage

The scout bee stage is used to reduce the possibility of stagnation of the swarm. The stagnation is
the situation in which all the solution agents gathered at the same location of the search space hence
the inter-agent distance becomes negligible. As the position update process depends on the inter-agent
distance, the movement of the solution agents is reduced. Hence the solution agents stagnated at the
same location.

In this stage, the number of update of every solution agent is checked. If any of the solution agent
is not updating its position up to the pre-defined number (limit) of iterations then that solution agent
is considered as exhausted and a new solution is randomly generated in the search space in place of
that solution. Hence, the situation of stagnation can be reduced while introducing the fluctuation in
the swarm through random initialization.



3 Job shop scheduling problem organisation

The LSJSSP can be interpreted in following manner: There are a set of n jobs to be processed using m
machines. To complete the execution, each job has to be passed through all the m systems in a given
predefined sequence. Each job consists of total m operations. To perform operations a job uses one of
the machine. When any of the job is executing on any machine it cannot be interrupted by other jobs.
The total number of operations are m x n that are scheduled on m systems [16].

A solution of the LSJSSP will be the minimum completion time for the considered jobs that is called
the makespan (M S). Mathematically the problem is stated as :

Minimize M S ez (5)

where, MSmaz = max(MSl, MSQ, MSg, MS4, ........ s MSn) MSl, ]\IS2, MSg, MS4, MSn are the
completion time for all the n jobs. Followings are the constraints for LSJSSP [11]:

— Each system can process at most one operation at a time.
— The completion time of any operation must be a positive integer.
— Precedence relationships among the different jobs must be satisfied.

4 FABC for LSJSSP

The FABC algoritm is used to solve LSJSSP instances, and the whole method is detailed here. Since
LSJSSP is a discrete optimization problem, a solution in the proposed algorithm is a discrete valued
vector (representing a potential operation scheduling list). The reordering of jobs for FABC is used to
estimate each solution in the search field. To generate the discrete valued sequence from a continuous
valued vector we have used random key encoding (RKE) scheme [35].

In RKE encoding scheme, first a continuous valued vector is arranged in increasing order using
the integer numbers from 1 to n x m for the n jobs and m available systems (machines). As each job
has to go through m systems for completing its execution so further transformation from this integer
sequence is performed using (Integer value mod n 4 1). The integer series is transformed to operation
order sequence using this transformation, and each job index has m occurrences. Figure 1 depicts the
transformation of a continuous valued vector into a discrete valued vector, followed by an operation
scheduling sequence. Through EKE, we have to get the discrete value sequence list which can decrease
the M.S value. The goal is to figure out a series of operations that reduces the overall time it takes to
complete all of the jobs. The detailed procedure is described in the subsequent steps:

Continuous 0.9 0.6 0.8 0.2 0.5 0.3
valued solution

Decoded as 6 4 5 1 3 2
Operation 1 2 3 2 1 3
sequence

Fig. 1: Random Key (RKE) Encoding Scheme

4.1 Initialization stage

The parameters of the proposed FABC algorithm namely, total number of solution agents, number of
employed and onlooker solution agents, and total number of iterations are initialized. Each solution
agent is initialized in the search space using the equation 1. As all the initialized sources are continuous
in nature, RKE scheme is used to generate the corresponding discrete valued operation sequence. Now
the MS value (objective value) for each operation sequence is calculated.
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4.2 Employed honeybee stage

At this stage, using equation 2 all the continuous valued solution agents are modified. The solution
agents is modified as per the information of the neighbouring agents. The updated solution agent is in
continuing form, so again RKE encoding scheme is applied to alter this continuous valued solutions in to
corresponding discrete operation sequence list. The MS value for this operation sequence is computed.
If the corresponding MS value is better then the previous value then the solution agent corresponding
to this operation sequence is selected for the next generation.

4.3 Onlooker honeybee stage

In onlooker honeybee stage, the probability for all the solution agents are assessed using the equation
3. The solution agents are chosen and updated as per the equation 3 and 4 respectively. Again the
solution agent is updated based upon the information obtained from the neighbouring solution agents.
To obtain the corresponding operation sequence, RKE scheme is applied on the produced continuous
valued solution agent. The M.S value is computed from the generated operation sequence. GSM is used
to choose new solution agent for the upcoming generation.

4.4 Scout honeybee stage

If a solution agent does not update it’s position up to the limit, then it is discarded and re-initialized in
the search space using the equation 1. The produced solution agent is in continuous form, again RKE
scheme is applied to obtain the corresponding operation sequence. Calculate the M.S value from this
operation sequence.

The pseudo-code of the designed approach for LSJSSP is shown in Algorithm 1.

Algorithm 1 FABC algorithm for LSJSSP

Parameter Initialization

Total solution agents = T'SA.

D (Dimension) = m x n

Total generation count = MGN

CurrentIndex=1.

Solution agents initialization in the search space using equation 1.

Conversion of continuous valued solution agents into an operation sequence (discrete valued solutions) to deal LSJSSP using RKE scheme.
M S value Computation for every operation sequence

While (CurrentIndex < MGN) do

— Step 1: Employed honeybee stage

— Revise the location of every solution agent as per the equation 2.

— The newly generated solution agent is in continuous form only, so it is converted in to a discrete valued operation sequence using
RKE scheme.

— Compute the MS value from the generated operation sequence.

— Apply GSM to select the new solution agent on the basis of the MS value of its respective operation sequence

— The former solution agent will be substituted by the new solution agent if respective operation sequence vector has a better M S
value.

— Step 2: Onlooker honeybee stage

Probability prot; computation using equation 3 for each solution agent

Revise the location of solution agent using the equation 4 selected as equation 3;

Obtain the new discrele operation sequence {rom the recently revised continuing solution agents using RKE scheme.

MS value computation for recently produced operation sequence

Apply GSM to select the new solution agent for the next generation.

The former solution agent will be substituted by the new solution agent if corresponding discrete solution sequence has a better
MS value

— Step 3: Scout honeybee stage

— If a solution agent does not modify its position up to limit.

— Randomly initialized thal solution agent as per equation 1 in the search space.

— Apply RKE scheme for producing discrete solution vector from this continuous valued solution agent.
— MS value computation for the operation scheduling list

— Step 4: Keep in memory the best agent in the swarm
— CurrentIndex=CurrentIndex+1
end while

Outcome will be the best agent found so far;




5 Results analysis and Discussion

To prove the effectiveness of FABC algorithm, it is applied on LSJSSP instances. Following 105 LSJSSP
instances are considered for experimentation [34,6,31].

— 15 SWV instances
— 50 TA instances
— 40 DMU instances

To attain the least MS value for all these 105 LSJSSP instances is the main goal. The experimental
setting is listed as below:

1. Number of run =10

Number of maximum iteration =2000

Number of solution agents TSA =50

Dimension D = Number of systems x Number of jobs
limit = D x TSA

OU

The parametric ambience for the FABC approach and the other considered approaches are kept
same in terms of swarm size and maximum number of iterations to carry out an equitable comparison.

The reported results of FABC are compared with the following state-of-art algorithms available in
the literature:

— Biased random key genetic algorithm (BRKGA(JSP)) [11]

A guided tabu search for LSJSSP (NKPR) [17]

Teaching learning based optimization method (TLBO) [22]

Differential based harmony search (DHS) algorithm [41]

— A tabu search to solve LSJSSP (TS) [40]

An advanced tabu search algorithm for LSJSSP (i-TSAB) [18]

AlgFix [20]

A tabu search/simulated annealing algorithm for LSISSP (TS/SA) [39]
Global equilibrium search technique (GES) [19]

The obtained results for the above three instances are represented in Tables 1 to 3. These tables list the
name of the instance, its size, the lower bound (LB), the upper bound (UB) for the best known solution
(BKS), the BKS obtained by FABC approach, and BKS value obtained from the compared algorithms.
The obtained results for all the instances demonstrate that the proposed FABC is superior approach in
reference to M .S value during assessment with other considered approaches.

Further to analyse the outcomes, average relative percentage error (RPE) is also calculated and
compared as tabulated in Table 4. The value of RPE is computed (with respect to the UB value of an
instance) as per demonstrated in equation 6.

RPE =100 x (BK Sa15 — UB)/UB (6)

Here, BK Sq40 represents the M S value obtained using the considered approaches. The attained out-
comes of Table 4 demonstrate the significant improvement in the average RPE which assures the au-
thenticity of the introduced approach.

6 Conclusion

This article proposed a solution to solve 105 large scale instances of job shop scheduling problem
(LSJSSP) using an efficient fully informed artificial bee colony (FABC). In FABC algorithm, to improve
the exploration ability in the solution search strategy of ABC, a new learning strategy is incorporated
in the onlooker bee stage by which learning is done from all the neighbouring solutions. The GABC
algorithm solution update strategy is adopted in the FABC with the fully informed learning mechanism.
The MS time is used as an evaluation criterion in the LSJSSP. The results are analysed and compared
to cutting-edge techniques proposed by a number of researchers. According to the results of the exper-
iments, the proposed solution gives better solution. In Future, some more performance metrics may be
considered for experimentation.



Table 1: Comparison in terms of best MS value for SMV instances

Instance Size LB UB FABC | BRKGA(JSP) TS/SA TS
SWV-01 20 x 10 1407 1407 1407 1407 1412 -
SWV-02 20 x 10 | 1475 | 1475 1475 1475 1475 -
SWV-03 20 x 10 | 1369 | 1398 1395 1398 1398 -
SWV-04 20 x 10 | 1450 | 1474 1465 1470 1470 -
SWV-05 20 x 10 | 1424 | 1424 1424 1425 1425 -
SWV-06 20 x 15 | 1591 | 1678 1674 1675 1679 -
SWV-07 20 x 15 | 1446 | 1600 1572 1594 1603 -
SWV-08 20 x 15 | 1640 | 1763 1762 1755 1756 -
SWV-09 20 x 15 | 1604 | 1661 1650 1656 1661 -
SWV-10 20 x 15 | 1631 | 1767 1736 1743 1754 -
SWV-11 50 x 10 | 2983 | 2983 2983 2983 - 2983
SWV-12 50 x 10 | 2972 | 2979 2975 2979 - 2979
SWV-13 50 x 10 | 3104 | 3104 3104 3104 - 3104
SWV-14 50 x 10 | 2968 | 2968 2968 2968 - 2968
SWV-15 50 x 10 | 2885 | 2886 2885 2901 - 2886
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Table 2: Comparison in terms of best MS value for TA instances

Instance Size LB UB FABC BRKGA (JSP) GES AlgFix | i-TSAB | TS/SA | DHS TLBO NKPR
TA-01 15 x 15 1231 1231 1231 1231 1231 1231 - 1231 1321 1526 1485
TA-02 15 x 15 1244 1244 1244 1244 1244 1244 - 1244 1313 1538 1476
TA-03 15 x 15 1218 1218 1218 1218 1218 1218 - 1218 1327 1594 1470
TA-04 15 x 15 1175 1175 1175 1175 1175 1175 - 1175 1285 1550 1519
TA-05 15 x 15 1224 1224 1224 1224 1224 1224 - 1224 1315 1551 1381
TA-06 15 x 15 1238 1238 1238 1238 1238 1238 - 1238 1346 1538 1517
TA-07 15 x 15 1227 | 1227 1227 1228 1228 1228 - 1228 1322 1546 1460
TA-08 15 x 15 1217 1217 1217 1217 1217 1217 - 1217 1304 1534 1446
TA-09 15 x 15 1274 1274 1274 1274 1274 1274 - 1274 1386 1614 1551
TA-10 15 x 15 1241 1241 1241 1241 1241 1241 - 1241 1334 1542 1365
TA-11 20 x15 1323 1357 1355 1357 1357 1358 1361 1359 1520 1876 1687
TA-12 20 x15 1351 1367 1367 1367 1367 1367 - 1371 1563 1856 1770
TA-13 20 x15 1282 1342 1342 1344 1344 1342 - 1342 1513 1849 1713
TA-14 20 x15 1345 1345 1345 1345 1345 1345 - 1345 1477 1780 1748
TA-15 20 x15 1304 1339 1337 1339 1339 1339 - 1339 1557 1929 1788
TA-16 20 x15 1302 1360 1360 1360 1360 1360 - 1360 1543 1852 1716
TA-17 20 x15 1462 1462 1462 1462 1469 1473 1462 1464 1607 1941 1781
TA-18 20 x15 1369 1396 1396 1396 1401 1396 - 1399 1601 1817 1776
TA-19 20 x15 1297 1332 1331 1332 1332 1332 1335 1335 1524 1842 1722
TA-20 20 x15 1318 1348 1348 1348 1348 1348 1351 1350 1554 1902 1710
TA-21 20 x 20 1539 1643 1642 1642 1647 1643 1644 1644 1854 2399 2165
TA-22 20 x 20 1511 1600 1600 1600 1602 1600 1600 1600 1852 2241 2126
TA-23 20 x 20 1472 1557 1557 1557 1558 1557 1557 1560 1765 2210 2145
TA-24 20 x 20 1602 1646 1646 1646 1653 1646 1647 1646 1829 2241 2173
TA-25 20 x 20 1504 1595 1594 1595 1596 1595 1595 1597 1792 2324 2117
TA-26 20 x 20 1539 1645 1641 1643 1647 1647 1645 1647 1863 2299 2206
TA-27 20 x 20 1616 1680 1680 1680 1685 1686 1680 1680 1905 2436 2194
TA-28 20 x 20 1591 1603 1600 1603 1614 1613 1614 1603 1819 2333 2100
TA-29 20 x 20 1514 1625 1625 1625 1625 1625 - 1627 1853 2280 2146
TA-30 20 x 20 1473 1584 1584 1584 1584 1584 1584 1584 1812 2247 2103
TA-31 30 x15 1764 | 1764 1764 1764 1764 1766 - 1764 2037 2528 2382
TA-32 30 x15 1774 | 1790 1781 1785 1793 1790 - 1795 2106 2591 2482
TA-33 30 x15 1778 1791 1791 1791 1799 1791 1793 1796 2091 2685 2511
TA-34 30 x15 1828 1829 1832 1829 1832 1832 1829 1831 2089 2508 2480
TA-35 30 x15 2007 | 2007 2007 2007 2007 2007 - 2007 2139 2509 2512
TA-36 30 x15 1819 1819 1819 1819 1819 1819 - 1819 2086 2705 2395
TA-37 30 x15 1771 1771 1728 1771 1779 1784 1778 1778 2067 2512 2436
TA-38 30 x15 1673 1673 1673 1673 1673 1673 - 1673 1980 2488 2250
TA-39 30 x15 1795 1795 1795 1795 1795 1795 - 1795 2010 2439 2501
TA-40 30 x15 1631 1673 1665 1669 1680 1979 1674 1676 1986 2455 2380
TA-41 30 x 20 1859 | 2006 2006 2008 2008 2022 - 2018 - - -
TA-42 30 x 20 1867 1945 1934 1937 1956 1953 1956 1953 - - -
TA-43 30 x 20 1809 1814 1836 1852 1870 1869 1859 1858 - - -
TA-44 30 x 20 1927 | 1983 1983 1983 1991 1992 1984 1983 - - -
TA-45 30 x 20 1997 | 2000 2000 2000 2004 2000 2000 2000 - - -
TA-46 30 x 20 1940 | 2008 2000 2004 2011 2011 2021 2010 - - -
TA-47 30 x 20 1789 1897 1892 1894 1903 1902 1903 1903 - - -
TA-48 30 x 20 1912 1945 1940 1943 1962 1962 1953 1955 - - -
TA-49 30 x 20 1915 1966 1962 1964 1969 1974 - 1967 - - -
TA-50 30 x 20 1807 1925 1925 1925 1931 1927 1928 1931 - - -




Table 3: Comparison in terms of best MS value for DMU instances

Instance Size LB UB FABC BRKGA (JSP) TS GES | i-TSAB | AlgFix
DMU-01 20 x15 2501 2563 2563 2563 2566 2566 2517 2563
DMU-02 20 x15 2651 | 2706 2704 2706 2711 2706 2715 2706
DMU-03 20 x15 2731 | 2731 2731 2731 - 2731 - 2731
DMU-04 20 x15 2601 | 2669 2669 2669 - 2669 - 2669
DMU-05 20 x15 2749 | 2749 2749 2749 - 2749 - 2749
DMU-06 20 x 20 | 2834 | 3244 3242 3244 3254 | 3250 3265 3244
DMU-07 20 x 20 | 2677 | 3046 3045 3046 - 3053 - 3046
DMU-08 20 x 20 | 2901 | 3188 3188 3188 3191 3197 3199 3188
DMU-09 20 x 20 | 2739 | 3092 3091 3092 - 3092 3094 3096
DMU-10 20 x 20 | 2716 | 2984 2982 29084 - 2084 2985 2984
DMU-11 30 x 15 | 3395 | 3453 3454 3445 3455 | 3453 3470 3455
DMU-12 30 x 15 | 3481 | 3516 3512 3513 3516 | 3518 3519 3522
DMU-13 30 x 15 | 3681 | 3681 3681 3681 3681 3697 3698 3687
DMU-14 30 x 15 | 3394 | 3394 3394 3394 - 3394 3394 3394
DMU-15 30 x 15 | 3332 | 3343 3343 3343 - 3343 - 3343
DMU-16 30 x 20 | 3726 | 3759 3748 3751 3759 | 3781 3787 3772
DMU-17 30 x 20 | 3697 | 3836 3828 3830 3842 | 3848 3854 3836
DMU-18 30 x 20 | 3844 | 3846 3844 3844 3846 | 3849 3854 3852
DMU-19 30 x 20 | 3650 | 3775 3769 3770 3784 | 3807 3823 3775
DMU-20 30 x 20 | 3604 | 3712 3712 3712 3716 | 3739 3740 3712
DMU-21 40 x 15 | 4380 | 4380 4380 4380 - 4380 - 4380
DMU-22 40 x 15 | 4325 | 4725 4725 4725 - 4725 - 4725
DMU-23 40 x 15 | 4668 | 4668 4668 4668 - 4668 - 4668
DMU-24 40 x 15 | 4648 | 4648 4648 4648 - 4648 - 4648
DMU-25 40 x 15 | 4164 | 4164 4164 4164 - 4164 - 4164
DMU-26 40 x 20 | 4647 | 4647 4647 4647 4647 | 4667 4679 4688
DMU-27 40 x 20 | 4848 | 4848 4848 4848 - 4848 4848 4848
DMU-28 40 x 20 | 4692 | 4692 4692 4692 - 4692 4692
DMU-29 40 x 20 | 4691 | 4691 4691 4691 - 4691 4691 4691
DMU-30 40 x 20 | 4732 | 4732 4732 4732 - 4732 4732 4749
DMU-31 50 x 15 | 5640 | 5640 5640 5640 - 5640 - 5640
DMU-32 50 x 15 | 5927 | 5927 5927 5927 - 5927 - 5927
DMU-33 50 x 15 | 5728 | 5728 5728 5728 - 5728 - 5728
DMU-34 50 x 15 | 5385 | 5385 5385 5385 - 5385 - 5385
DMU-35 50 x 15 | 5635 | 5635 5635 5635 - 5635 - 5635
DMU-36 50 x 20 | 5621 | 5621 5621 5621 - 5621 - 5621
DMU-37 50 x 20 | 5851 | 5851 5851 5851 - 5851 5851 5851
DMU-38 50 x 20 | 5713 | 5713 5713 5713 - 5713 - 5713
DMU-39 50 x 20 | 5747 | 5747 5747 5747 - 5747 - 5747
DMU-40 50 x 20 | 5577 | 5577 5577 5577 - 5577 - 5577
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Table 4: Comparison based upon Average RPE

Approach Instances ARPE FABC(%) | Improvement
Solved (%) (%)

TA instances

BRKGA(JSP) | 50 0.015 -0.093 0.108
(11]

GES [19] 50 0.218 -0.093 0.311
AlgFix [20] 50 0.556 -0.003 0.649
i-TSAB [18] 25 0.269 -0.15 0.419
TS/SA [39] 50 0.156 -0.093 0.249
DHS [41] 40 12.412 -0.104 12516
TLBO [22] 40 36.883 -0.104 36.987
NKPR [17] 40 28.951 -0.104 29.055

DMU Instances

BRKGA(JSP) | 40 -0.021 -0.027 0.006
(11]

TS [40] 13 0.097 -0.072 0.169
GES [19] 40 0.107 -0.027 0.134
i-TSAB [18] 20 0.24 -0.06 0.3
AlgFix [20] 40 0.056 -0.027 0.083

SWU Instances

BRKGA-JSP | 15 -0.156 -0.364 0.52
(11]

TS/SA [39] 10 -0.073 -0.529 0.602
TS [40] 5 0 -0.0338 0.0338
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Abstract Particle Swarm Optimization (PSO) is a popular population based approach used to solve
nonlinear and complex optimization problems. It is simple to implement and swarm based probabilistic
algorithm but, it also has drawbacks like it easily falls into local optima and suffers from slow convergence
in the later stages. In order to reduce the chance of stagnation, while improving the convergence speed, a
new position updating phase is incorporated with PSO, namely fitness based position updating in PSO.
The proposed phase is inspired from the onlooker bee phase of Artificial Bee Colony (ABC) algorithm.
In the proposed position updating phase, solutions update their positions based on probability which
is a function of fitness. This strategy provides more position updating chances to the better solutions
in the solution search process. The proposed algorithm is named as Fitness Based Particle Swarm
Optimization (FPSO). To show the efficiency of FPSO, it is compared with standard PSO 2011 and
ABC algorithm over 15 well known benchmark problems and three real world engineering optimization
problems.

Keywords Particle Swarm Optimization - Artificial Bee Colony - Swarm intelligence - Fitness based
position updating - Optimization

1 Introduction

After being inspired from social behavior of fish schooling and birds flocking while searching the food,
Kennedy and Eberhart [1], [2] developed a swarm intelligence based optimization technique called Par-
ticle swarm optimization (PSO) in 1995. PSO is a population based, easy to understand and implement,
robust meta heuristic optimization algorithm. PSO can be a better choice for multi model, non convex,
non linear and complex optimization problems but like any other evolutionary algorithm, it also has
drawbacks like trapping into local optima[3], computationally inefficient as measured by the number
of function evaluations required [4]. These points restrict PSO to less applicability [5]. Researchers are
continuously working to achieve these goals i.e., increasing convergence speed and ignoring the local
optima to explore PSO applicability. As a result, a huge variants of PSO algorithm have been proposed
[6],[3],[7],[8],]9], [4] to get rid of these weaknesses. However, achieving both goals simultaneously is diffi-
cult like liang et al. proposed the comprehensive-learning PSO (CLPSO) [3] which aims at ignoring the
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local optima, but results show that it also suffers from slow convergence. Ratnaweera et al. [6] proposed
time varying acceleration factors to balance cognitive and social component in initial and later stages.
Zhan et al. [7] also tried to adopt the acceleration factors increasing or decreasing depending on different
exploring or exploiting search space stages. Zhang et al. [8] studied effect of these factors on position
expectation and variance and suggested that setting the cognitive acceleration factor as 1.85 and the
social acceleration factor as 2 works good for improving system stability. Gai-yun et al. [9] also worked
for self adaption of cognitive and social factors. In this paper, a fitness based position update strategy is
proposed in PSO to balance the exploration and exploitation capabilities. Further, the velocity update
equation of PSO is also modified to improve the convergence ability.

Rest of the paper is organized as follows: Standard PSO is explained in section 2. In section 3,
Fitness based Particle Swarm Optimization (FPSO) is proposed. In Section 4, performance of the
proposed strategy is analyzed. Applications of FPSO to engineering optimization problems are explained
in section 5. Finally, in section 6, paper is concluded.

2 Standard Particle Swarm Optimization Algorithm

PSO is an optimization technique which simulates the birds flocking behavior. PSO is a dynamic
population of active, interactive agents with very little in the way of inherent intelligence. In PSO,
whole group is called swarm and each individual is called particle which represents possible candidate’s
solution. The swarm finds food for its self through social learning by observing the behavior of nearby
birds who appeared to be near the food source. Initially each particle is initialized within the search
space randomly and keeps the information about its personal best position known as pbest, swarm best
position known as gbest and current velocity V with which it is moving, in her memory. Based on these
three values, each particle updates its position. In this manner, whole swarm moves in better direction
while following collaborative trail and error method and converges to single best known solution.

For an D dimensional search space, the i particle of the swarm is represented by a D- dimensional
vector, X; = (x4, T2, ..., &ip). The velocity of this particle is represented by another D-dimensional
vector V; = (v;1,v:2,....,0;p). The previously best visited position of the it" particle is denoted as
P; = (pi1, pi2, -y DiD)- g is the index of the best particle in the swarm. PSO swarm uses two equations
for movement called velocity update equation and position update equation. The velocity of the i*" particle
is updated using the velocity update equation given by equation (1) and the position is updated using
equation (2).

Vij = Vi5 + €171 (pij — .I‘ij) + CQ’I"Q(pgj — inj) (1)
Tij = Tij + i (2)

where j = 1,2, ..., D represents the dimension and i = 1,2, ...,.S represents the particle index. S is the
size of the swarm and ¢; and c¢o are constants (usually ¢; = ¢2), called cognitive and social scaling
parameters respectively or simply acceleration coefficients. r; and ry are random numbers in the range
[0, 1] drawn from a uniform distribution.

The right hand side of velocity update equation (1) consists of three terms, the first term v;; is
the memory of the previous direction of movement which can be thought of as a momentum term
and prevents the particle from drastically changing direction. The second term c¢i71(p;; — x45) is called
cognitive component or persistence which draws particle back to their previous best situation and
enables the local search in swarm. The last term cor2(pg; — @45) is known as social component which
allows individuals to compare themselves to others in it’s group and is responsible for global search.
The Pseudo-code for Particle Swarm Optimization, is described as follows :

Based on the neighborhood size, initially two versions of PSO algorithm were presented in literature
namely, global version of PSO which is the original PSO (PSO-G) and the local version of PSO (PSO-
L)[10]. The only difference between PSO-G and PSO-L is that the term p, in social component in
velocity update equation (1). For PSO-G, it refers the best particle of whole swarm while for PSO-
L it represents the best particle of the individual’s neighborhood. The social network employed by
the PSO-G reflects the star topology which offers a faster convergence but it is very likely to converge
prematurely. While PSO-L uses a ring social network topology where smaller neighborhoods are defined
for each particle. It can be easily observed that due to the less particle inter connectivity in PSO-L, it
is less susceptible to be trapped in local minima but at the cost of slow convergence. In general, PSO-G
performs better for unimodal problems and PSO-L for multimodal problems.

Velocity update equation in PSO determines the balance between exploration and exploitation
capability of PSO. In Basic PSO, no bounds were defined for velocity, due to which in early iterations
the particles far from ghest, will take large step size and are very much intended to leave the search
space. Thus to control velocity so that particle update step size is balanced, velocity clamping concept
was introduced. In velocity clamping, whenever velocity exceeds from its bounds, it is set at its bounds.



Algorithm 1 Particle Swarm Optimization Algorithm:

Initialize the parameters, w, c¢1 and c2;
Initialize the particle positions and their velocities in the search space;
Evaluate fitness of individual particles;
Store gbest and pbest;
while stopping condition(s) not true do
for each individual, X; do
for each dimension j, z;; do
(i) Evaluate the velocity v;; using (1);
(ii) Evaluate the position z;; using (2);
end for
end for
Evaluate fitness of updated particles;
Update gbest and pbest;
end while
Return the individual with the best fitness as the solution;

To avoid the use of velocity clamping and to make balance between exploration and exploitation, a new
parameters called inertia weight [11] was introduced in velocity update equation as:

vy = w* vy + e1r1(pij — Tij) + car2(pg; — Ti5) (3)

where inertia weight is denoted by w. In subsequent section, the proposed PSO algorithm is explained
in details.

3 Fitness Based Particle Swarm Optimization

However the standard PSO has the capability to get a good solution at a significantly faster rate but,
when it is compared to other optimization techniques, it is weak to refine the optimum solution, mainly
due to less diversity in later search [12]. On the different side, problem-based tuning of parameters
is also important in PSO, to get optimum solution accurately and efficiently[13]. In standard PSO
velocity update equation (1) contains three terms. The first term has the global search capability, the
second and third terms are the particles cognitive and social information sharing capability respectively.
More cognitive capability force particle to move towards personal best position fast and more social
information force particle to move towards global best position fast. It can be seen from (1), the
movement of swarm towards optimum solution is guided by the acceleration factor ¢; and ¢o. Therefore,
acceleration coefficient ¢; and ¢y should be tuned carefully to get the desired solution.

Kennedy and Eberhart [1] explained that more value of the cognitive component compared to the
social component, results in excessive wandering of individuals through the search space while on the
other hand more value of the social component may results that particles will converge prematurely
toward a local optimum. These two component play important role for balancing the exploration and
exploitation capabilities of PSO. Therefore, in this paper two modifications are proposed for improving
the solution search efficiency of PSO.

1. Velocity update equation (refer equation 3) of PSO is modified as follows:
Vij = W * Vi + ¢ X r(pgj — Tij) (4)

It is clear from equation (4) that the Pbest component (cognitive component) is removed {ci71(pi; —
xi;)} from the velocity update equation of PSO. Now the magnitude of velocity of each individual
will depend on its distance from the current global best solution. Therefore, this strategy will improve
the exploitation capability of PSO.

2. A new position update process, which is inspired from the Artificial Bee Colony (ABC) algorithm’s
onlooker bee phase [14] is incorporated with PSO. In employed bee phase of ABC, all the employed
bees search the food source and calculate their fitness using equation (5):

. /(14 f;), if;>0
f””essi_{l/JE Js{f),.), if }:<0. (5)

and then in the onlooker bee phase, onlooker bees analyze the available information and select a
solution with a probability, prob;, related to its fitness. The probability prob; may be calculated
using equation (6):
0.9 x fitness;(Q)
b;(G) = 0.1 6
pTO Z( ) ma:l:fzt(G) + ) ( )




where G is the iteration counter, fitness;(G) is the fitness value of i** solution and max fit(G) is

the maximum fitness of the solutions in G*" iteration. Position update equation of ABC is shown in
equation (7):

Yij = Tij + Gij(Tij — Thz) (7)

where k € {1,2,...,5} and j € {1,2, ..., D} are randomly chosen indices, k¥ must be different from 4,
¢i; is a random number between [-1, 1] and zy; is a random individual in the current population.
In the basic ABC, at any given time, only one dimension is updated in employed or onlooker bee
phase. In onlooker bee phase this update takes place based on a probability which is a function of

fitness.
The proposed position update strategy is incorporated with PSO and the newly developed algorithm

is named as Fitness based PSO (FPSO). In FPSO, Algorithm 2 is applied after basic PSO operators.
The insertion of Algorithm 2 makes FPSO more capable of exploitation in the better search regions.
It is expected because in FPSO after applying basic PSO operators, better candidate solutions are
offered more chances to update themselves than worse candidates. The pseudo-code of the proposed
position update strategy which works after PSO operators is shown in Algorithm 2.

Algorithm 2 Fitness based Position Update Phase:

for each individual, x; do
if prob; > rand(0,1) then
Yij = Tij + G5 (Tij — Thy),
Calculate fitness of yj,
Apply greedy selection between y; and xj,
end if
end for

The Pseudo-code for the proposed FPSO algorithm is shown in Algorithm 3.

Algorithm 3 Fitness based Particle Swarm Optimization(FPSO):

Initialize the parameters, w, and ¢ and S;
Initialize the particle positions and their velocities in the search space;
Evaluate fitness of individual particles;
Store the gbest solution;
while stopping condition(s) not true do
for each individual, X; do
for each dimension j of x;; do
(i) Evaluate the velocity v;; using (4);
(ii) Evaluate the position z;; using (2);
end for
end for
Evaluate fitness of updated particles;
Update gbest solution;
/R Pitness based position update phase in FPSO ¥k /
t=1,i=1 /*** ¢ counts number of updates ***/
while ¢t < S do
if prob; > rand(0, 1) then
JHHHHEE prob; is the probability of an individual z; described by equation (6)****/
Yij = Tij + i (@15 — Tij),
{k, j is randomly selected index}
Calculate fitness of yj;
Apply greedy selection between y; and x;.;
t=t+1
end if
i=1+1
if ¢ > S then
i=1
end if
end while
end while
Return the individual with the best fitness as the solution;
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Abstract The large-scale job-shop scheduling problem (LSJSSP) is among one of the complex schedul-
ing problems. Researchers are continuously working to deal with the LSJSSP through applying the
various probabilistic algorithms which includes swarm intelligence based as well as the evolutionary
algorithms even though not able to get the optimum results and it is still an interesting area. Therefore,
in this paper a recently developed non-deterministic algorithm namely fitness based particle swarm op-
timization (FitPSO) is applied to solve the LSJSSP problem instances. In the proposed solution, fitness
based solution update strategy is incorporated with the PSO strategy to get the desired results. The
obtained outcome is motivating and through results analysis, a confidence is achieved that the proposed
FitPSO can be recommendation to solve the existing and the new LSJSSP instance. A fair comparative
analysis is also presented which also supports the proposed recommendation.

Keywords Job shop scheduling problem - Fitness based Learning - Swarm Intelligence - Particle
Swarm Optimization

1 Introduction

Efficient scheduling is crucial for making the best use of available resources. In the domain of production
management, the Large Scale Job-shop Scheduling Problem (LSJSSP) is a complicated combinatorial
optimization problem. JSSP needs n jobs to be accomplished on m systems (machines). The system
order for all jobs is fixed and varies depending on the jobs. The jobs are put in place in a non-preemptive
manner, which means that while one job is running on one system, it cannot be disrupted by another.
The primary goal of JSSP is to find an appropriate sequence scheme that reduces the time it takes for
all jobs to be completed, which is referred to as makespan (M.S). The goal is to minimize the makespan
(MS) [9,35].

The LSJSSP is one of the most important NP-hard problem. To solve LSJSSP, several deterministic
conventional mathematical models and heuristic methods have been used. To small size LSJSSP cases,
mathematical models have a successful solution in a reasonable amount of time. [1]. The computational
time increases exponentially as the size of the instances grows. So, for a larger scale LSJSSP, Non-
conventional nature inspired algorithms (NIAs) are preferred alternatives [8]. The numerous processes
found in nature are used to create NIAs. Swarm intelligence based algorithms (SIA) and evolutionary
algorithms (EAs) are the two main types of NIAs. The design of SIA was influenced by the intellectual
actions of creatures. Some state-of-art SIA are Artificial bee colony (ABC)[14], spider monkey optimiza-
tion (SMO) [5], teaching learning based optimization (TLBO) [26] etc,. EAs like differential evolution
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(DE) [34], genetic algorithm (GA) [10] etc., are based on biotic transformation like crossover, selection
ctc.

In recent years, NIAs are performing very well to solve physical world problems [31,30]. In this
series, many NIAs emerged well to solve LSJSSP such as genetic algorithm (GA) [11], particle swarm
optimization (PSO) [6], hybrid biogeography based optimization (BBO) algorithm [38], hybrid differ-
ential evolution algorithm [24], multiple type individual enhancement PSO (MPSO) algorithm [18],
classical LSJSSP [28], differential based harmony search algorithm with variable neighborhood search
[43], biased random key genetic algorithm [12], new neighboured structure based algorithm [8], teaching
learning based optimization (TLBO) algorithm [15], improved ABC (IABC) algorithm [39], discrete
ABC (DABC) [40], best so far ABC [4], parallel ABC (pABC) algorithm [3], beer froth ABC [30] etc.
In terms of computational time and solution efficiency, the obtained results are acceptable. At the
same time, finding a solution for larger JSSP instances is a challenging task. These findings motivate
researchers to continue their work in order to solve LSJSSP.

So in this paper, a novel solution is proposed to solve the LSJSSP instances through the recent
variant of PSO algorithm, namely fitness based particle swarm optimization algorithm (FitPSO). The
FitPSO algorithm was developed by K. Sharma et. al. [29]. In the FitPSO algorithm, a fitness based
solution search mechanism is incorporated in the standard PSO. As the FitPSO algorithm efficiently
balances the diversification of the population during the solution search process [29]. In this paper the
FitPSO algorithm is applied to solve 105 LSJSSP instances. The results are analysed and compared to
other important methods available in the literature. The obtained findings substantiate the validity of
the proposed strategy.

The remainder of the paper is structured as follows: FitPSO is explained in Section 2. Formulation
of LSJSSP is discussed during the section 3. The entire process for solving LSJSSP using the proposed
strategy is discussed in section 4. The implementation and experimental results are shown in section 5.
Finally, the section 6 summarises the proposed work and suggests future research directions.

2 Fitness Based PSO

PSO is an optimization technique which simulates the birds flocking behavior. PSO is a dynamic
population of active, interactive agents with very little in the way of inherent intelligence. In PSO,
whole group is called swarm and each individual is called particle which represents possible candidate’s
solution. The swarm finds food for its self through social learning by observing the behavior of nearby
birds who appeared to be near the food source. Initially each particle is initialized within the search
space randomly and keeps the information about its personal best position known as pbest, swarm best
position known as gbest and current velocity V' with which it is moving, in her memory. Based on these
three values, each particle updates its position. In this manner, whole swarm moves in better direction
while following collaborative trail and error method and converges to single best known solution.

For an D dimensional search space, the i*? particle of the swarm is represented by a D- dimensional
vector, X; = (241, %2, ....,x;p). The velocity of this particle is represented by another D-dimensional
vector V; = (v;1, 049, ....,v;p). The previously best visited position of the i** particle is denoted as
P; = (pi1,pi2, -y DiD). g is the index of the best particle in the swarm. PSO swarm uses two equations
for movement called wvelocity update equation and position update equation. The velocity of the i particle
is updated using the velocity update equation given by equation (1) and the position is updated using
equation (2).

vij = vij + aari(pij — Tij) + cara(pgs — Tij) (1)

Tij = Tij + Vi (2)

where j = 1,2, ..., D represents the dimension and ¢ = 1,2, ..., S represents the particle index. S is the

size of the swarm and c¢; and ¢y are constants (usually ¢; = ¢2), called cognitive and social scaling

parameters respectively or simply acceleration coefficients. 1 and ry are random numbers in the range
[0, 1] drawn from a uniform distribution.

The right hand side of velocity update equation (1) consists of three terms, the first term v;; is
the memory of the previous direction of movement which can be thought of as a momentum term
and prevents the particle from drastically changing direction. The second term c¢171(p;; — x;;) is called
cognitive component or persistence which draws particle back to their previous best situation and
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enables the local search in swarm. The last term cora(py; — ;) is known as social component which
allows individuals to compare themselves to others in it’s group and is responsible for global search.
The Pseudo-code for Particle Swarm Optimization, is described as follows :

Algorithm 1 Particle Swarm Optimization Algorithm:

Initialize the parameters, w, c¢1 and cg;
Initialize the particle positions and their velocities in the search space;
Evaluate fitness of individual particles;
Store gbest and pbest;
while stopping condition(s) not true do
for each individual, X; do
for each dimension j, x;; do
(i) Evaluate the velocity v; using (1);
(ii) Evaluate the position x;; using (2);
end for
end for
Evaluate fitness of updated particles;
Update gbest and pbest;
end while
Return the individual with the best fitness as the solution;

Based on the neighborhood size, initially two versions of PSO algorithm were presented in literature
namely, global version of PSO which is the original PSO (PSO-G) and the local version of PSO (PSO-
L)[27]. The only difference between PSO-G and PSO-L is that the term py in social component in
velocity update equation (1). For PSO-G, it refers the best particle of whole swarm while for PSO-
L it represents the best particle of the individual’s neighborhood. The social network employed by
the PSO-G reflects the star topology which offers a faster convergence but it is very likely to converge
prematurely. While PSO-L uses a ring social network topology where smaller neighborhoods are defined
for each particle. It can be easily observed that due to the less particle inter connectivity in PSO-L, it
is less susceptible to be trapped in local minima but at the cost of slow convergence. In general, PSO-G
performs better for unimodal problems and PSO-L for multimodal problems.

However the standard PSO has the capability to get a good solution at a significantly faster rate but,
when it is compared to other optimization techniques, it is weak to refine the optimum solution, mainly
due to less diversity in later search [2]. On the different side, problem-based tuning of parameters
is also important in PSO, to get optimum solution accurately and efficiently[32]. In standard PSO
velocity update equation (1) contains three terms. The first term has the global search capability, the
second and third terms are the particles cognitive and social information sharing capability respectively.
More cognitive capability force particle to move towards personal best position fast and more social
information force particle to move towards global best position fast. It can be seen from (1), the
movement of swarm towards optimum solution is guided by the acceleration factor ¢; and cy. Therefore,
acceleration coefficient ¢; and cs should be tuned carefully to get the desired solution.

Kennedy and Eberhart [16] explained that more value of the cognitive component compared to the
social component, results in excessive wandering of individuals through the search space while on the
other hand more value of the social component may results that particles will converge prematurely
toward a local optimum. These two component play important role for balancing the exploration and
exploitation capabilities of PSO. Therefore, in this paper two modifications are proposed for improving
the solution search efficiency of PSO.

1. Velocity update equation of PSO is modified as follows, here w is the inertia weight:
Vij = W * U5 + ¢ X 7(pg; — Tij) (3)

It is clear from equation (3) that the Pbest component (cognitive component) is removed {c1r1 (p;; —
x;;)} from the velocity update equation of PSO. Now the magnitude of velocity of each individual
will depend on its distance from the current global best solution. Therefore, this strategy will improve
the exploitation capability of PSO.
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2. A new position update process, which is inspired from the Artificial Bee Colony (ABC) algorithm’s
onlooker bee phase [13] is incorporated with PSO. In employed bee phase of ABC, all the employed
bees search the food source and calculate their fitness using equation (4):

if f; > 0, then fitness; = 1/(1+ f;), else fitness; =1+ abs(f;). (4)

and then in the onlooker bee phase, onlooker bees analyze the available information and select a
solution with a probability, prob;, related to its fitness. The probability prob; may be calculated
using equation (5):
0.9 x fitness;(G)
ob;(G) =

probi(G) mazx fit(G)
where G is the iteration counter, fitness;(G) is the fitness value of 5" solution and max fit(G) is
the maximum fitness of the solutions in G*" iteration. Position update equation of ABC is shown in
equation (6):

+0.1, (5)

Yij = Tij + Gij(xij — x1;) (6)
where k € {1,2,...,5} and j € {1,2, ..., D} are randomly chosen indices, k¥ must be different from 1,
¢;; is a random number between [-1, 1] and zj; is a random individual in the current population.
In the basic ABC, at any given time, only one dimension is updated in employed or onlooker bee
phase. In onlooker bee phase this update takes place based on a probability which is a function of
fitness.
The proposed position update strategy is incorporated with PSO and the newly developed algorithm
is named as Fitness based PSO (FitPSO). In FitPSO, Algorithm 2 is applied after basic PSO
operators. The insertion of Algorithm 2 makes FitPSO more capable of exploitation in the better
search regions. It is expected because in FitPSO after applying basic PSO operators, better candidate
solutions are offered more chances to update themselves than worse candidates. The pseudo-code of
the proposed position update strategy which works after PSO operators is shown in Algorithm 2.

Algorithm 2 Fitness based Position Update Phase:

for each individual, z; do
if prob, > rand(0,1) then
Yi; = Ti; + ¢i]($ig - xkg)v
Calculate fitness of yj,
Apply greedy selection between y; and x;,
end if
end for

The Pseudo-code for the proposed FitPSO algorithm is shown in Algorithm 3.

3 Job shop scheduling problem organisation

The LSJSSP can be interpreted in following manner: There are a set of n jobs to be processed using m
machines. To complete the execution, each job has to be passed through all the m systems in a given
predefined sequence. Each job consists of total m operations. To perform operations a job uses one of
the machine. When any of the job is executing on any machine it cannot be interrupted by other jobs.
The total number of operations are m x n that are scheduled on m systems [19].

The objective of the LSJSSP is to minimize the total completion time for all the jobs i.e. makespan
(M S). Mathematically the problem is stated as :

Minimize M Spaz (7)
where, M Syqp = max(M Sy, M Sy, MS3, MSy, ........  MS,,). MSy, MSy, MS3, MSy, ........, MS, are the
completion time for all the n jobs. Followings are the constraints for LSJSSP [12]:

— Each system can process at most one operation at a time.
— The completion time of any operation must be a positive integer.
— Precedence relationships among the different jobs must be satisfied.
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Algorithm 3 Fitness based Particle Swarm Optimization(FitPSO):

Initialize the parameters, w, and ¢ and S;
Initialize the particle positions and their velocities in the search space;
Evaluate fitness of individual particles;
Store the gbest solution;
while stopping condition(s) not true do
for each individual, X; do
for each dimension j of x;; do
(i) Evaluate the velocity v;; using (3);
(ii) Evaluate the position x;; using (2);
end for
end for
Evaluate fitness of updated particles;
Update gbest solution;
[FFFFF*RFitness based position update phase in FitPSQ ####sicsx /
t=1,i=1 /*** ¢ counts number of updates ***/
while ¢ < S do
if prob; > rand(0,1) then
JF¥F*R¥¥X prob, is the probability of an individual z; described by equation (5)****/
Yiy = Tiy + i (Ti; — Thy),
{k,j is randomly selected index}
Calculate fitness of yj;
Apply greedy selection between y; and x;.;
t=t+1
end if
i=1+1
if i > S then
1=1
end if
end while
end while
Return the individual with the best fitness as the solution;

4 FitPSO for LSJSSP

The FitPSO algoritm is used to solve LSJSSP instances, and the whole method is detailed here. Since
LSJSSP is a discrete optimization problem, a solution in the proposed algorithm is a discrete valued
vector (representing a potential operation scheduling list). The reordering of jobs for FitPSO is used to
estimate each solution in the search field. To generate the discrete valued sequence from a continuous
valued vector we have used random key encoding (RKE) scheme [37].

In RKE encoding scheme, first a continuous valued vector is sorted in an ascending order using an
integer series from 1 to n x m, where n represents the total number of jobs and m shows the total
number of available systems. As each job has to go through m systems for completing its execution so
further transformation from this integer sequence is performed using (Integer value mod n + 1). The
integer series is transformed to operation order sequence using this transformation, and each job index
has m occurrences. Figure 1 depicts the transformation of a continuous valued vector into a discrete
valued vector, followed by an operation scheduling sequence. Our goal is to find an operation sequencing
list (a vector of discrete values) that decreases the makespan value. The goal is to figure out a series of
operations that reduces the overall time it takes to complete all of the jobs. The detailed procedure is
described in the subsequent steps:

4.1 Step 1:

The parameters of the proposed FitPSO algorithm namely, cognitive, social scaling parameters (c1, ¢2),
Inertia Weight (w), total members of population (solution agents), and total number of iterations are
initialized. Each solution agent is initialized in the search space in a uniformly distributed way. As all
the initialized sources are continuous in nature so RKE scheme is used to generate the corresponding
discrete valued operation sequence. Now the MS value (objective value) for each operation sequence is
calculated.
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Continuous 0.9 0.6 0.8 0.2 0.5 0.3
valued solution

Decoded as 6 4 5 1 3 2
Operation 1 2 3 2 1 3
sequence

Fig. 1: Random Key (RKE) Encoding Scheme

4.2 Step 2:

As the step 2 and 3 are iterative steps, the solutions refined themselves in these steps to get the optimum
solution. In step2, all the solution agents update themselves using the standard PSO algorithm. The
updated solution agent is in continuing form, so again RKE encoding scheme is applied to alter this
continuous valued solutions in to corresponding discrete operation sequence list. The MS value for this
operation sequence is computed. The pbest and gbest solutions are updated on the basis of the MS
value.

4.3 Step 3:

In this step, the probability for all the solution agents are assessed using the equation 5. This probability
will help to decide that which solution is high fit than the other solutions in the swarm. The solution
agents are chosen and updated as per the equation 5. Again the solution agent is updated based upon
the information obtained from the neighbouring solution agents. To obtain the corresponding operation
sequence, RKE scheme is applied on the produced continuous valued solution agent. The M S value is
computed from the generated operation sequence and the pbest and gbest solutions are updated.

4.4 Step 3:

In this step, the best solution found so far is memorized (gbest solution). Thus obtained solution is
termed is the optimum solution generated by the FitPSO.
The pseudo-code of the designed approach for LSJSSP is shown in Algorithm 4.

5 Implementation and experimental results

To prove the effectiveness of FitPSO algorithm, it is applied on LSJSSP instances. Following 105 LSJSSP
instances are considered for experimentation [36,7,33].

— 15 SWV instances
— 50 TA instances
— 40 DMU instances

To attain the least M.S value for all these 105 LSJSSP instances is the main goal. The experimental
setting is listed as below:

Number of run =10

Number of maximum iteration =2000

Number of solution agents TSA =50

Dimension D = Number of systems x Number of jobs

Inertia weight w = 0.8,

Acceleration coefficients ¢ = ¢; = ¢2 = 0.5 + log2 (for PSO)[17],

A
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Algorithm 4 FitPSO algorithm for LSJSSP

Parameter Initialization

Total solution agenta = TSA.

D (Dimension) = m x n

Total generation count = MGN

CurrentIndex=1.

Step 1: Random initialization of the Solution members in the search space

Conversion of continuous valued solution agents into an operation sequence (discrete valued solutions) to deal LSJSSP using RKE scheme.
M S value Computation for every operation sequence

While (CurrentIndex < MGN) do

— Step 2: PSO stage:
— for each individual, X; do
for each dimension j of 2;; do
(i) Evaluate the velocity v;; using (3)
(ii) Evaluate the position z;; using (2)
end for
end for
Obtain the new discrete operation sequence from the recently revised continuing solution agents using RKE scheme
M S value computation for recently produced operation sequence.
Evaluate fitness of updated particles
Update the respective pbest solutions
Update gbest solution
Step 3: FitPSO stage:
Probability prob1 computation using equation 5 for each solution agent.
t=1,4 = 1 **3'¢ counts number of updates
while 1 < S dc
if prob; > rand(C, 1) then
vij = 245 + bij (@i — aky).
k,j is randomly selected index }
alculate fitness of y;
Apply greedy selection between y; and xj.;
Obtain the new discrete operation sequence from the recently revised continuing solution agents using RKE scheme.
M S value computation for recently produced operation sequence
Evaluate fitness of updated particles;
Update the respective pbest solutions;
t=1+1
end if
i=1di+1
if @ > S then

end nf
end while
Update gbest solution
Step 4: Memorize the best solution found so far.
CurrentIndex=CurrentIndex+1
end while

Output the best solution;

The parametric ambience for the FitPSO approach and the other considered approaches are kept
same in terms of swarm size and maximum number of iterations to carry out an equitable comparison.

The reported results of FitPSO are compared with the following state-of-art algorithms available in
the literature:

— Biased random key genetic algorithm (BRKGA-JSP) [12]

A guided tabu search for LSJSSP (NKPR) [20]

Teaching learning based optimization method (TLBO) [25]

— Differential based harmony search (DHS) algorithm [43]

A tabu search to solve LSJSSP (TS) [42]

An advanced tabu search algorithm for LSJSSP (i-TSAB) [21]

AlgFix [23]

A tabu search/simulated annealing algorithm for LSJSSP (T'S/SA) [41]
— Global equilibrium search technique (GES) [22]

The obtained results for the above three instances are represented in Tables 1 to 3. These tables list
the name of the instance, its size, the lower bound (LB), the upper bound (UB) for the best known
solution (BKS), the BKS obtained by FitPSO approach, and BKS value obtained from the compared
algorithms. The obtained results for all the instances demonstrate that the proposed FitPSO is superior
approach in reference to M.S value during assessment with other considered approaches.

Further to analyse the outcomes, average relative percentage error (RPE) is also calculated and
compared as tabulated in Table 4. The value of RPE is computed (with respect to the UB value of an
instance) as per demonstrated in equation 8.

RPE =100 x (BK Sa, — UB)/UB (8)

Here, BK Sq4, represents the M .S value obtained using the considered approaches. The attained out-
comes of Table 4 demonstrate the significant improvement in the average RPE which assures the au-
thenticity of the introduced approach.
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6 Conclusion

This article proposed a solution to solve 105 large scale instances of job shop scheduling problem
(LSJSSP) using an efficient fully informed artificial bee colony (FitPSO). In FitPSO algorithm, to
balances the diversification in the swarm during the solution search process, a fitness based strategy
is incorporated in the standard PSO algorithm. The MS time is used as an evaluation criterion in the
LSJSSP. The results are analysed and compared to cutting-edge techniques proposed by a number of
researchers. According to the results of the experiments, the proposed solution gives better solution. In
Future, some more performance metrics may be considered for experimentation.



